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Preface

Refereed Conference Proceedings
The London Mathemtical Society Symposiumt on

Geometry and Cohomology in Group Theory
12-22 July 1994

The cross-fertilization of ideas from abstract group theory with those from ge-
ometry, the use of topological and cohomological techniques have contributed
over recent years to revitalising group theory and representation theory in
many exciting ways. Not only has this brought impressive mathematical ad-
vances, but again it has drawn in different kinds of specialists. At this London
Mathematical Society Symposium we aimed to draw together experts in alge-
bra, geometry, representation theory and cohomology to make a contribution
to this interchange of ideas. It is an area where there is marked strength in
the United Kingdom, traditionally the home of many group theorists, but
nowadays also active in cohomological and geometric group theory.
The closing report to the Science and Engineering Research Council* began
thus:

"The success of this meeting owed much to the strong list of participants, the
high standard of lectures by invited speakers and to the good environment
at Grey College which encouraged many collaborative research projects. The
success can be measured by the strength of the articles which we are assem-
bling for the Conference Proceedings."
We thank all those authors whose articles were submitted for this volume, and
also the equal number of referees. We emphasise that every effort was made

t Supported by SERC Grant GR/H92159.
* Now replaced by the Engineering and Physical Sciences and the Particle

Physics and Astronomy Research Councils.



vi"

to have papers refereed to the same standard as academic and learned math-
ematical journals. There are a number of survey articles here including those
by Carlson, Cornick, Grigorchuk, Linnell, Mikhajlovskii and Ol'shanskii, and
Wilson. These cover ground from cohomology and representation theory,
analytic methods and the use of von Neumann algebras, the application of
hyperbolic groups and the structure of soluble groups. Davis gave a series of
lectures on buildings. Further contributions were made following collabora-
tions at the meeting, for example the paper by Neumann and Rowley.
Every participant contributed to the success of this meeting. For the smooth
organization we are indebted to the hard work of Sue Nesbitt, Rachel Duke
and Ruth Silverstone. The support of the London Mathematical Society
and Tony Scholl were invaluable, and the accommodation at Grey College
provided a comfortable and congenial atmosphere. The first named editor
would like to thank Richard Platten for his assistance with authors' proofs.

Peter H. Kropholler Graham A. Niblo
School of Mathematical Sciences Faculty of Mathematical Studies
Queen Mary & Westfield College University of Southampton
Mile End Road Highfield
London El 4NS Southampton S0171BJ

Ralph Stohr
Mathematics Department
UMIST
P.O. Box 88
Manchester M60 1QD
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On the Cohomology of SL2(Z[1/p])

Alejandro Adem and Nadim Naffah

Mathematics Department, University of Wisconsin, Madison, WI 53706 USA.

Department of Mathematics, ETH-Zurich, Zurich CH-8092.

0. Introduction

In this note we compute the integral cohomology of the discrete groups
SL2(Z[1/p]), p a prime. According to Serre [6] these are groups of virtual
cohomological dimension 2. The method we use is to exploit the fact that
these groups can be expressed as an amalgamation of two copies of SL2 (Z)
along the subgroup I'o(p) of 2 x 2 matrices with lower left hand entry divisible
by p. We first compute the cohomology of this virtually free group (using a
tree on which it acts with finite isotropy and compact quotient), and then use
the well-known Mayer-Vietoris sequence in cohomology to obtain our result.
We assume that p is an odd prime larger than 3. The cases p = 2,3 must be
treated separately; we discuss them at the end of the paper. We are grateful
to the referee for his extremely useful remarks, and to J.-P. Serre for pointing
out Proposition 3.1.

1. Double cosets and permutation modules

In this section we calculate certain double coset decompositions which will
play a key role in our approach. Let G = SL2(IF,), and B C G the subgroup
consisting of all matrices with lower left hand entry equal to zero. It is easy
to see that B = Z/p XT Z/p - 1, a semidirect product. We will denote by C2,
C4 and C6 the cyclic subgroups generated by the following three respective
matrices of orders 2, 4 and 6:

a2= ( ), a4= ( ),6 O as= (0 11 )
_0 -1 1

The first author was partly supported by the NSF.



2 A. Adem, N. Naffah

It is easy to check that the set of right cosets B\G decomposes as follows:

1
B\G = Ba4 U (u B

xElFp
x

0

1 )

Now as a2 is central, we obtain a double coset decomposition for G using B
and C2 as follows:

G=Ba4C2U(u B
1 0

)C2).
xElFp

X

7[G/C2] 1 B= (Z[B/C2])p+'. (1.1)

Next we consider the double cosets using C4. Note that we have

1

(x
O)

(01

01) (0 -x)
and

C1
0

-x) (1/x 0) - ( 0

x

-x)
From this we conclude that if x -1/x or 0, then

and so

B(1 0
0)

)C4=B(1 UB(-1

, and Ba4C4=BUBa4.
x 1 x 1 1/x

0)
1

In each case the two cosets are permuted by the matrix a4. In the case
when x2 + 1 = 0, then the coset is fixed under this action, and hence the
associated coset is equal to the double coset. It is an elementary fact that the
polynomial t2 + 1 will have roots in lFp (necessarily two distinct ones) if and
only if p - 1 mod(4). Using this and the induction restriction formula yields

7L[G/C4] IB= ZL[B/s1C481'] ® 7Z[B/s2v4s2'] ® (Z[B/G2])(p-1)/2

if p - 1 mod(4), and

7G[G/C4] IB- (Z[B/C2])(p+l)/2 otherwise. (1.2)
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The elements s1, s2 correspond to the two roots of the polynomial.
0 1

For C6, we must look at the action of the matrix of order 3, on
-1 -1

the double cosets. In this case the orbit of the action will be of the form

B
(x

1

0)

B (1/(11 x) 11)'
B((1x-1)/x 11)

provided x 0 1. A coset will be fixed if and only if x2 - x + 1 = 0; given
that p > 3, this will have roots in IF,, (necessarily two distinct ones) if and
only if p - 1 mod(3). As for x = 1, the corresponding coset gives rise to the
singular orbit

1 1 Ba4.B(B) 1 0),

From this we can deduce the following decomposition (notation as before):

7L[G/C6] I B= 7G[B/s1C6si 1] ® 7G[B/s2C6s21] ® (Z[B1
C2])cp-1"3

if p - 1 mod(3) and

Z[G/C6] I B (Z[B/C2])(P+1)I3 otherwise. (1.3)

2. The cohomology of Fo(p)

The subgroup Po(p) c SL2(Z) is defined by

b

I'o(p)
a

{(c d) E SL2(7L) I c-0 mod(e)}.

If r(p) denotes the level p congruence subgroup, then clearly Fo(p) can be
expressed as an extension

1-4 F(p)-4 F,(p)-+B-- 1.

Recall [6] that SL2(Z) acts on a tree T with finite isotropy, and quotient a
single edge. As r(p) is torsion free, it acts freely on this tree, and so G =
SL,(F,) acts on the finite graph T/F(p). The isotropy subgroups of this action
are precisely C4 and C6 for the vertices and C2 for the edge. Let EB denote
the universal B-space, then clearly using the projection 7r : Fo(p) -4 B, Fo(p)
can be made to act diagonally on EB x T, with trivial isotropy. As this space
is contractible, its quotient under this action has the same homotopy type as
the classifying space BFo(p), and so we have BFo(p) ^_' EB xB T/F(p).
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Let C* denote the cellular cochains on the B-CW complex T/r(p); then it
is clear from the above that

CO = 7L[G/C4] lB ®Z[G/Cs] I B and that C' -= 7L[G/C2] 1B

In this situation, there is a spectral sequence converging to H*(r°(p),7L) (see
[2]) with Ell" = H9(B, Cr), which degenerates into a long exact sequence:

H'(ro(p),7L) -4 H'(B,C°) -> H'(B,C') - H'+'(ro(p),7L) ...
(2.1)

where the middle arrow is induced by the coboundary map 6 on C*.
As a first application of the long exact sequence (2.1) we obtain

Proposition 2.2. Under the above conditions, H' (Fo(p), 7L) ^-' (Z)"() where

(p - 7)/6, if p 1 mod(12);

N(p) - (p + 1)/6, if p - 5 mod(12);

(p - 1)/6, if p 7 mod(12);

(p + 7)/6, if p - 11 mod(12).

Proof The sequence (2.1) starts as

0 -4 Z -4 (C°)B --+ (c')B Hl(r°(p), z) -> H'(B, C°).

Recall that H' (B, C°) = 0, as C' is a permutation module. Hence calculating
ranks completes the proof.

To compute the remaining cohomology groups we first switch to the associ-
ated projective group Pr°(p). Note that there will be a situation analogous
to that for the original group, except that throughout we must divide out
by the central Z/2. Note that if PB is the associated group for B, then
C' will now be a free PB-module. Hence the corresponding long exact se-
quence degenerates to yield the isomorphism H2i(Pr°(p), Z) = H2(PB, CO)
for all i > 0, and the fact that all its odd dimensional cohomology (except in
dimension 1) is zero. This is summarized in

Proposition 2.3. For any integer i > 1, we have that

Z/6 ® 7L/6, if p 1 mod(12);

Z/2 ® Z/2, if p 5 mod(12);
H21(Pr°(p), 7L) -

Z/3 ® Z/3, if p = 7 mod(12);

0, if p 11 mod(12).
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and H2i+1(Pro(p), Z) = 0.

Note that H1(Pro(p), Z) = H' (ro(p), 7G).
Next we apply the spectral sequence over Z associated to the central extension

1-4C2-4 ro(p)-4 Pro(p) -*1.

Note that the interesting cases are if p - 1, 5 mod (12), and that the 3-
torsion plays no role. As the group has periodic cohomology and is virtually
free, it suffices to compute H2 and H3. In total degree 2 we simply have the
contributions from H2(C2i Z) °- Z/2 and H2(Pro(p), Z)(2) Z/2 ® Z/2. As
4-torsion must appear (there will be a subgroup of that order), we conclude
that H2(ro(p), Z)(2) - Z/4 ® 7G/2.
In total degree 3, we only have one term

H1 (Pro(p), H2(C2, Z)) - (Z/2)N(v)+2

However, it is not hard to see that the map induced by the quotient in co-
homology, H4(pro (p),Z) -3 H4(ro(p),7L) must be zero. This can be proved
by comparing the two long exact sequences described above and using the
corresponding fact for the map induced by the quotient 7L/4 --+ Z/2. The
only possible differential on this horizontal edge group is d3 : E3'2 -* E3'1,

hence it must have an image of 2-primary rank 2. We conclude that E.2
-(Z/2)N(p) = H3(ro(p),7L), and we obtain

Theorem 2.4. For any integer i > 1, we have

H2i(ro(p), Z) ,-

and

Z/12 ® Z/6, if p 1 mod(12);

Z/4 ® Z/2, if p 5 mod(12);

Z/3 ® Z/6, if p 7 mod(12);

Z/2, if p 11 mod(12)

H2i+1(ro (p), z) - (Z/2) N(P)
11

3. Calculation of the cohomology

To begin we recall that aside from the natural inclusion we also have an
injection p : ro(p) -4 SL2(Z), given by

(c
db

) H
(Pa

c d)
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Using these two imbeddings, we can construct the amalgamated product [6]

SL2(Z[1/p]) - SL2(Z) *ro(P) SL2(Z)

In addition we have that

7L/12 if r is even;

10 if r is odd.

We can identify p* with the ordinary restriction map.
Using the Mayer-Vietoris sequence associated to an amalgamated product
we see that H' (SL2 (Z[1/p]), Z) = 0 and that we have exact sequences

0->ZN (P) H2 (SL, (Z[1 /Pll,Z)-rZ/12®Z/12-/H2 (ro (P),Z)-1 H3 (SL2 (Z[1 /Pl),Z) 10

and

0-,(Z/2)N(P)-*H2i(SL2(Z[1/PI),Z)-1Z/12®Z/12-*H2`(ro(P),Z) +H2i+1 (SL2(Z[1/P]),Z)-sO.

The cohomology will evidently be 2-fold periodic above dimension 2, which
is in fact the virtual cohomological dimension of SL2(7G[1/p]).
We will need the following result, which is due to J.-P. Serre [7]. It can also
be proved using an explicit presentation for the group, described in [1].

Proposition 3.1.

7L/3 if p=2;

H1(SL2(7[1/p]),Z) - Z/4 if p=3;

7L/12 otherwise.

Hence we have that for p > 3, H2(SL2(Z[1/p]),7G) - (Z)N(") ® Z/12.
Let A(p) denote the number 12/IQ(p)l, where Q(p) is the largest cyclic sub-
group in H2(Po(p), Z). Then, from the fact that the restriction from the
cohomology of SL2(Z) to that of its cyclic subgroups factors through Po(p),
we deduce that the sequence above simplifies to yield

0 -* (Z/2)N(P) -4 H2i(SL2(Z[1/p]),7G) -> Z/12 ® Z/A(p) -4 0 (3.2)

and

H2i+1(SL2
(Z[1 /p]),7L) - H2i(Po(p),

Z)/Q(p).

Moreover, from our previous calculation for Po(p), we have that
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Q (P) =

Z/12 if p m 1 mod(12);

7L/4 if p - 5 mod(12);

Z/6 if p - 7 mod(12);

Z/2 if p - 11 mod(12).

It remains only to determine precisely what this extension (3.2) looks like.
We need only be concerned with the 2-primary component. Recall that
H2i(SL2(Z[1/p]), Z) is a quotient of H2(SL2(7L[1/p]), Z), as SL2(7L[1/p]) is a
group of virtual cohomological dimension 2, which has 2-fold periodic coho-
mology. This can also be explained by saying that the sequence in high even
dimensions can be identified with the corresponding sequence in 2-dimensional
Farrell cohomology (see [2]). Mapping one sequence into the other, we see
that a 7L/4 summand must split off for all values of p > 3. This means that
the sequence will split for p - 1, 5 mod(12). For the remaining cases p = 7, 11
mod(12), it remains to solve the extension problem after splitting off the Z/4
summand. However, from our knowledge of H2, we know that the dimension
of H2' ® Z/2 can be at most N(p) + 1. We infer that the reduced extension
does not split, and must necessarily have a Z/4 summand present. Hence we
have the following complete calculation:

Theorem 3.3. Let p be an odd prime larger than 3, then

H'(SL2(7L[1/p]),Z) 0

and

7L(p-7)l6 ® Z/12 if p m 1 mod(12);

J 7L(p+')/6 ® Z/12 if p 5 mod (12);
H2(SL2(7G[1/p]) 7G) rn(p-1)/6 ®7L/12

if p 7 mod (12);/Z(p+'r)l6

® 7L/12 if p - 11 mod (12).

For i > 2, we have

(7L/2)(p-7)/6 ® Z/12 if p 1 mod(12);

(Z/2)(P+')/6 ® Z/12 ® Z/3 if p m 5 mod (12);
H2i(SL2(7L[1/p]), Z)

(p-7)/6(7L/2) ® Z/12 ® 7L/4 if p m 7 mod(12);

(7L/2)(p+i)/6 ® Z/12 ® Z/12 if p 11 mod(12),

and
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Z/6 if p 1 mod(12);

H2i-1(SL2(7L[1/p]), Z) =
Z/2 if p = 5 mod(12);

Z/3 if p 7 mod(12);

1 0 if p 11 mod(12).

0
Of the two remaining cases (p = 2,3) the second one can be done in a manner
totally analogous to what we have presented. Specifically we have that

17L ifi=0,1;
Ht(ro(3),7L) = Z/6 if i is even;

7 L / 2 ifi > 1 is odd.
We obtain that H2(SL2(7L[1/3]),7L) = Z ® Z/4, H2ti+1(SL2(7L[1/3]),(SL2(Z[1/3]),Z) c---- 0,
and it only remains to deal with the extension

0 -4 Z/2 -+ H2t(SL2(7L[1/p]),7L) -4 7L/12 ® Z/2 -4 0.

As before the 7L/12 must split off, and by rank considerations an extra Z/4
summand must appear. To summarize, we have

0 if i is odd;

Ht(SL2(7L[1/3]),7L) _ 7L ®7L/4 if i = 2;

7G/12 ®7L/4 ifi = 2j, j > 1.

The case p = 2 is complicated by the fact that r(2) is not torsion-free.
However, one can still make use of the associated projective groups; Pr(2) is
free of rank 2, and there is an extension

1 -+ Pr(2) -4 Pro(2) -> Z/2 -* 1.

Analyzing the action on the corresponding graph, it is not hard to show that

Z ifiis0or1;
H `(Pro(2), Z) = 7L/2 if i is even;

0 otherwise.
Then, using the central extension, it is direct to show that

Z ifiis0or1;
H`(ro(2), Z) 7L/4 if i is even;

Z/2 ifi is odd, i > 1.
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Using the Mayer-Vietoris sequence as before, we obtain that

H2(SL2(Z[1/2]), Z) = Z ® Z/3, H'(SL2(Z[1/2]), Z) = 0

if i is odd, and a short exact sequence

0 -* Z/2 -+ H2i(SL2(Z[1/2]), Z)) --> Z/12 ® Z/3 -- 0.

In this case, we do not know that the Z/12 summand must split off. Looking
at the 2-primary part, we see that it can have at most one cyclic summand.
The only possibility is Z/8, and we have

10 if i is odd;

H'(SL2(Z[1/2]), Z) = Z @Z/3 if i = 2;

Z/24 ® Z/3 if i = 2j, j > 1.

Remarks. Note that this last group has no finite subgroups of order eight,
which makes its cohomology rather interesting. We are grateful to Hans-
Werner Henn for pointing out the correct cohomology of this group. Also we
would like to point out that Naffah [4] has calculated the 3-adic component of
the Farrell cohomology H*(SL2(Z[1/N]), Z) for any integer N. This of course
can be used to recover our calculations at p = 3 in dimensions larger than
2. Moss [5] has computed the rational cohomology of SL2(Z[1/N]) which
again can be used to recover part of our results. The general calculation of
H*(SL2(Z[1/N]),Z) seems to be a rather complicated but interesting open
problem. We refer to [3] for more on this.
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1. Introduction
Whatever one may think of a proof that covers over ten thousand pages of
journal articles, some of which have still not appeared in print, the classifi-
cation of finite simple groups is a remarkable theorem. It says that (apart
from the cyclic groups of prime order and the alternating groups) most finite
simple groups are groups of Lie type. These are the analogues of the compact
Lie groups, defined over a finite field. They admit a uniform description in
terms of the fixed points of certain automorphisms related to the Frobenius
map, on the corresponding algebraic groups in prime characteristic. The clas-
sifying space of a finite group of Lie type fibers over that of the corresponding
Lie group with fibers which are cohomologically finite away from the defining
characteristic. Apart from the groups of Lie type, there are the alternating
groups A,, (n > 5), and twenty-six other groups called the sporadic simple
groups.
The first five sporadic groups were discovered by Mathieu in the late nine-
teenth century. The remaining twenty-one were discovered in the nineteen
sixties and seventies. The largest is the Fischer-Griess Monster, which has
order roughly 8 x 1053. For a wealth of information on the sporadic groups
and other "small" finite simple groups, the reader is referred to the ATLAS of
finite groups [Atlas]. A great deal of effort has gone into trying to understand
these sporadic groups. For example, the "Monstrous Moonshine" [CN] (see
also [CS]) is a remarkable series of observations, still not fully understood,
connecting various of the sporadic groups, especially those involved in the
Monster, with the theory of modular functions. This article is about another
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attempt to understand some of the sporadic groups from a different point of
view, namely that of the topology of their classifying spaces.
The story started with the construction by Bill Dwyer and Clarence Wilker-
son [DW2] of a new finite loop space at the prime two, which they call DI(4).
The mod two cohomology of its classifying space is equal to the rank four
Dickson invariants, whence the name. Finite loop spaces are sufficiently like
compact Lie groups that this prompted the question of what finite simple
groups could be associated to them in the way that the finite groups of Lie
type are associated to the compact Lie groups.
The first group that was considered in this regard was Conway's group Co3i
which has a 2-local structure closely associated with the 2-local structure of
DI(4). It turns out that the classifying space of Co3 fibers over the classifying
space of DI(4) with fibers cohomologically finite at the prime two. However,
this turns out to be more akin to the relation between M12 and G2 than to
the relation between G2(q) and G2.
The finite simple groups which should be regarded as the groups "of Lie type
DI(4)" over the field of q elements don't literally exist as groups. They were
first considered by Ron Solomon [So] in an attempt to prove that Co3 is
determined by a Sylow 2-subgroup. He was led to consider simple groups in
which the centralizer of an involution was Spin(q) (q odd), possibly with some
decoration of odd order. In order to prove nonexistence, Solomon was obliged
to write down what appeared to be a consistent fusion pattern for the Sylow
2-subgroup, and then pass to an odd prime to obtain a contradiction. It turns
out that despite the nonexistence of these groups, they have perfectly good
2-completed classifying spaces, which map to the classifying space of DI(4)
with fibers which are cohomologically finite at the prime two.
This prompts the speculation that there should exist a theory of "p-local
groups", in which one only gives a Sylow p-subgroup and a fusion pattern.
The fusion pattern should obey a set of axioms which are strong enough to
be able to build a p-completed classifying space. One possible candidate for
such a set of axioms has been written down by Puig [Pu] in connection with
his attempts to formalise the local theory of blocks, but much work remains
to be done in this area.

2. Classifying spaces

We begin by describing the theory of classifying spaces, and explain why
they are rigid enough that new maps between them should be considered to
be interesting.
For any topological group G, there exists a contractible space EG together
with a free action of G on EG. A uniform construction was found by Mil-
nor [Mil. Roughly speaking, the idea is to form an infinite join G * G * . . . of
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copies of G as a topological space, and let G act diagonally. The join X * Y of
two spaces X and Y consists of the space obtained from X x I x Y by iden-
tifying (x, 0, y) with (x', 0, y) for all x, x' E X and y E Y, and (x, 1, y) with
(x, 1, y') for all x E X and y, y' E Y. The difficult point in Milnor's construc-
tion is the exact description of the topology on the infinite join. However, we
shall mostly be interested in the case where G is either discrete or a compact
Lie group. In this case, we can just give the infinite join the weak topology
with respect to the finite joins. Then EG is a CW-complex, so to see that it
is contractible, it suffices to see that any map from the n-sphere S" to EG
extends to a map from the (n + 1)-disk Dn}1 Since S" is compact, any such
map has image contained in some finite join of copies of G, and then the next
higher join contains the cone on this join, so that the map can be extended
to Dn+1 in this next join.
We write BG for the quotient of EG by the action of G. It turns out that the
classifying space BG is determined up to homotopy by G, independently of
the choice of contractible space EG. Thus if G is a subgroup of G', then using
EG' instead of EG, we see that there is an induced fibration BG -* BG'
with fiber the coset space G'/G. Similarly if N is a normal subgroup of G, we
may use EG x E(G/N) instead of EG, with G acting on both factors, and
obtain an induced fibration BG -> B(G/N) with fiber BN. In this way, for
any homomorphism of topological groups a : G -* G', we have an induced
map of classifying spaces Ba : BG -* BG', unique up to homotopy.
If G is discrete, BG is an Eilenberg-Mac Lane space K(G, 1), and EG is its
universal cover. In any case, the loop space S2BG is homotopy equivalent to
G as a topological space.
Classifying spaces are homotopically rather rigid. For example, if G and G'
are discrete groups, then the set of homotopy classes of maps [BG; BG'] is
in natural bijection with Homgrp(G, G')/Inn(G'). Here, the group Inn(G') of
inner automorphisms of G' acts in the obvious way by composition on the set
Homgrp(G, G') of group homomorphisms from G to G'. The bijection sends a
map a : G -+ G' to Ba : BG -* BG'. The inverse of this bijection sends
a map BG -- BG' to its effect on ir,. This, of course, depends on a choice
of basepoints, but the orbit under the action of Inn(G') does not.
On the other hand, if G is a connected simple compact Lie group, then a
theorem of Jackowski, McClure and Oliver (Theorem 3 in [JMO]) says that
there is a natural bijection

HomLiegrp(G, G)/Inn(G) A {k > 0 : k = 0 or(k, JWI) = 1} -* [BG; BG]

sending (a, k) to iJjk o Ba. Here, the smash product denotes the quotient
of the direct product given by identifying all elements in which at least one
coordinate is zero. For k > 0, the operations V are the unstable Adams psi
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operations, which are known to exist for any connected simple compact Lie
group and any integer k coprime to the order of the Weyl group W. They
commute up to homotopy with maps coming from Lie group homomorphisms.
If k = 0, V is taken to be the identity map. The map jpk is characterised by
the property that its effect on degree 2i rational cohomology is multiplication
by k' for each i>0.
These theorems indicate that it is of interest to construct maps of classifying
spaces which do not come from group homomorphisms and Adams operations.
Some examples for connected Lie groups can be found in [JMO]. For maps
from the classifying space of a finite group to that of a compact Lie group,
the situation is rather unclear, and it is possible that one should try to build
a branch of representation theory based on such maps.
A theorem of Dwyer and Wilkerson [DW] indicates that we may work one
prime at a time in this situation. Writing Xp for the Bousfield-Kan p-
completion of a space X, their theorem states the following.

Theorem 2.1. If 7r is a finite group and G is a connected compact Lie group
then

Map(Bir, BG) f-- 11 Map((Bir)P, (BG)P ).

Here, and from now on in this article, one must work with simplicial sets
rather than topological spaces, and "Map" denotes the simplicial mapping
space. The homotopy category of topological spaces is equivalent to the ho-
motopy category of simplicial sets (these homotopy categories are formed by
inverting weak equivalences), via singular simplices and geometric realization.
So we use the term "space" from now on to mean "simplicial set", and we
replace a classifying space by its simplicial set of singular simplices.
The effect of Bousfield-Kan p-completion on the classifying space of a finite
group G is as follows. Without changing the mod p cohomology, it gets rid
of the mod l cohomology for every prime 1 # p. Its effect on the fundamental
group G is to replace it by G/OP(G). So for example if G is a nonabelian
finite simple group then the p-completion of BG is simply connected. The
group G may not be recovered from the p-completion of BG, though the
Sylow p-subgroup and the strong fusion of its subgroups may be recovered.

3. Dickson invariants

Let Fq be the finite field of q elements, with q = p° a prime power. Let
V = (IF,)" be an n-dimensional vector space over lFq. Then the finite general
linear group G = acts on V in the obvious way, and hence on the
coordinate ring
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1Fq[V]=1Fq® V*®S2(V*)®...

We regard this as a graded ring, with 1Fq in degree zero, V * = HomFq (V, lFq )
in degree one, S2(V*) in degree two, and so on. It is a polynomial ring over
1Fq on generators forming an basis for V* in degree one.
L. E. Dickson's theorem [Di] states that the invariants of this action also form
a polynomial ring:

Fq [V
]G = lq [Cn,0, ... , Cn,n-1]

in generators cn,i (the Dickson invariants) of degree qn - q'. In fact, there is
an explicit formula for cn,; as follows:

C.,{ = (-1)n-' E 11 0.
wcv OEV*

dimFq(W)_'OIW#o

If you are a topologist, you may wish to double all the degrees in the above
discussion, because if p is odd, elements of odd degree are supposed to anti-
commute rather than commuting. Having done that, the polynomial ring on
generators in degree two over 1Fp acquires an action of the Steenrod opera-
tions, since it is the mod p cohomology of a torus Tn = ][8n/7lin = B7Gn of rank
n. The group GL(n, Z) acts on Tn, and induces an action of the quotient
group GL(n,1F,) on its mod p cohomology. This action commutes with the
Steenrod operations, and so the invariants inherit an action of the Steenrod
algebra.
Even if you are a topologist, in the case where q = p = 2, you may also wish
to keep the polynomial generators in degree one. In this case, the polynomial
ring is the cohomology of (RP°°)n = B(7G/2)n, and so the mod two Steenrod
algebra acts on this polynomial ring. Again, the invariants inherit an action
of the Steenrod algebra. In this case, let us look at the question of when the
algebra of Dickson invariants can be the cohomology of a topological space,
as an algebra over the Steenrod algebra. When n = 1, the group GL(1,1F2)
is the trivial group, and the invariants form a polynomial ring on a single
generator in degree one:

IF2[c1,o] = H*(RP°°,1F2) = H' (BZ/2, F,).

The situation gets slightly more interesting in rank two. GL(2,1F2) is iso-
morphic to the symmetric group of degree three, and the invariants form a
polynomial ring on generators in degrees two and three:

1F2[c2,o,c2,1] = H*(BSO(3),1F2).
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The group SO(3) contains a subgroup E2 isomorphic to (7L/2)2, and the
normalizer quotient is Nso(3)(E2)/E2 = GL(2,1F2). The restriction map

H'(BSO(3),1F2) ---+ H*(B(Z/2)2, gj'2)GL(2,12)

identifies the cohomology with the Dickson invariants.
In rank three, a similar thing happens, but with the exceptional compact Lie
group G2. The Dickson invariants of rank three form a polynomial ring on
generators in degrees four, six and seven:

F2 [C3,0, C3,1, C3,2] - H' (BG2,1C'2) -

The group G2 contains a subgroup E3 isomorphic to (7L/2)3, and the normal-
izer quotient is NG2 (E3)/E3 = GL(3,1F2). The restriction map

H*(BG2, F2) -+ H* (B(7/2)3
12

)GL(3,F2)

again identifies the cohomology with the Dickson invariants.
In rank four, there is no longer a compact Lie group with the right coho-
mology. However, Dwyer and Wilkerson [DW2] recently constructed a space
BDI(4) with the Dickson invariants of rank four as its cohomology. The Dick-
son invariants in this case form a polynomial ring on generators in degrees
eight, twelve, fourteen and fifteen:

12 [C4,0, C4,1, C4,2, C4,31 ° H'(BDI(4),1F2).

The space BDI(4) is not the classifying space of a group, but rather of a
finite loop space DI(4) at the prime two. We shall have more to say about
this in Section 6. This finite loop space may be thought of as containing a
subgroup E4 isomorphic to (Z/2)4, with normalizer quotient NDI(4)(E4)/E4 ='
GL(4,1F2). The "restriction map"

H*(BDI(4),1F2) - H '(B(7G/2)4 1F3)IL(4,F2)

again identifies the cohomology with the Dickson invariants.
The game stops here. A theorem of Lin and Williams [LW] states that there
is no topological space whose mod two cohomology is the ring of Dickson
invariants of rank five or more (as an algebra over the Steenrod algebra).
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4. Finite groups of Lie type

As we pointed out in the introduction, most finite simple groups are of Lie
type. Actually, just as in the representation theory, from the point of view of
the classifying space, it is better to work with certain "almost simple" groups.
For example, instead of working with PSL(n, Fq), it is usually easier to work
with SL(n,1Fq), or even GL(n,Fq).
With this proviso, the data needed to specify a finite group of Lie type are
a compact Lie group G, a finite field IFq, and a diagram automorphism a
of the corresponding Dynkin diagram. For a large portion of the groups of
Lie type (the untwisted groups), a is the identity map. For example, both
the finite linear groups and the finite unitary groups come from the Dynkin
diagram A,,, with the identity automorphism in the first case, and a diagram
automorphism of order two in the second case. The finite group associated
with the above data is denoted 'G(q), or just G(q) if a is the identity.
The following theorem of Quillen and Friedlander (see Quillen [Nice], and
Friedlander [Fr], Chapter 12) relates the classifying space of the finite group
°G(q) to the classifying space of G.

Theorem 4.1. There is a commutative diagram

B -G(q)

1

BG
idx(WY9oBa)

BG

.l°
BG x BG

which becomes a homotopy pullback square after Bousfield-Kan completing at
any prime l not dividing q.
In particular, there is a fibration B °G(q) -* BG whose fibers have finite
homology at primes l not dividing q.

Here, A denotes the diagonal map from BG to BG x BG. Construction of
this diagram involves replacing the compact Lie group by the corresponding
algebraic group defined over Z, and lifting from characteristic p using etale
homotopy theory. The details may be found in Friedlander [Fr], Chapter 12.
This diagram gives a method of calculating the cohomology of the finite
groups of Lie type away from their defining characteristic. First, one uses
the Eilenberg-Moore spectral sequence on this homotopy pullback to calcu-
late the cohomology modulo a certain filtration, then one uses the subgroup
structure to ungrade. This was carried out by Quillen [Qu] in the case of
GL(n, Fq), Fiedorowicz and Priddy [FP] in the case of the other classical
groups, and Kleinerman [Kl] for the exceptional Lie types.
To give an example, consider the fibration BG2(q) -+ BG2 for q an odd
prime power. The homology of the fiber at the prime two is an exterior
algebra on generators in degrees three, five and six. So we get an embedding
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H.(BG2,F'2) =F'2[c3,0,c3,1,c3,2] C H'(BG2(q),F2)

The corresponding Eilenberg-Moore spectral sequence calculation gives a fil-
tration of H* (BG2 (q),1F2) whose associated graded is a tensor product of a
polynomial ring on the Dickson generators in degrees four, six and seven,
with an exterior algebra on generators in degrees three, five and six. After
ungrading, we see that H* (BG2 (q), F2) is a free module of rank eight over the
Dickson algebra. In particular, it is a Cohen-Macaulay ring, and the Poincare
series for the cohomology is

1 t31 t-11 6

t' dimF2 H(BG2(q), F2) _ (1
+

t,)(1 ± t6)(1
+

t7).i=O

5. The Mathieu group M12

A few years ago, Adem, Maginnis and Milgram computed H*(BM12i1F2) (see
[AMM]). Their answer was rather complicated, but they observed that the
answer was a finitely generated free module over a subring isomorphic to the
Dickson invariants of rank three:

H'(BG2,F2) =12[c3,0,c3,1,c3,2] C H*(BM12,F2)

It is clear that there can be no homomorphism of groups from M12 to G2
inducing the above map in mod two cohomology, because G2 has a seven
dimensional complex representation, while the smallest nontrivial complex
representation of M12 is eleven dimensional. However, it turns out that there
is a fibration BM12 -* BG2 whose fibers have finite mod two cohomology.
There are (at least) two possible strategies for constructing such a map. One
(Milgram [Milg]) is to construct maps from BM12 to BG2(q) for suitable
q, and then use the Quillen-Friedlander theorem. A more direct approach
(Benson and Wilkerson [BW]) goes as follows. Let P be a Sylow 2-subgroup
of M12, of order 26. Let W be the centralizer of the center of P, and W' be the
normalizer of a normal fours group in P. Then IW : PI _ IW' : PI = 3, but
W W'. The obvious map from the amalgamated free product W *p W' to
M12 is a cohomology isomorphism, and so after completing at the prime two,
we obtain a homotopy equivalence (B(W *p W'))2 - (BM12)2. It turns out
that there is a group homomorphism from W *p W' to G2, whose image is
dense, and having the desired effect in cohomology. Now using Theorem 2.1,
we may pass from a map between 2-completions to a map between the original
classifying spaces BM12 -* BG2 by specifying any map we want at odd
primes.
The classifying space B(W *p W') can be obtained by taking the homotopy
colimit (see Chapter XII of Bousfield and Kan [BK]) of the diagram
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BP BW

1

BW'

which may be thought of in this case as a "double mapping cylinder".

6. Finite loop spaces

From the point of view of a homotopy theorist, the two properties of a compact
Lie group G which stand out are:

(i) G is a finite CW-complex, and

(ii) G has the homotopy type of a loop space (namely G - SZBG).

We say that a space X is a finite loop space if it satisfies properties (i) and (ii).
It turns out that finite loop spaces enjoy many of the properties of compact
Lie groups. There is an algebraically defined maximal torus, and a Weyl
group which is a finite reflection group [AW].
Since homotopy theorists like to work one prime at a time using Bousfield-
Kan p-completion, it is appropriate also to introduce the p-complete version
of this definition. We say that X is a finite loop space at the prime p if it
satisfies the following two properties:

(i)p X is p-complete and H"(X,FF) is finite, and

(ii)p X has the homotopy type of a loop space I1BX.

Note that BX is now just the name of the space whose loops are homotopy
equivalent to X. To give a finite loop space, we must really give both X and
BX, but X is determined by BX so it is only necessary to construct BX.
Again, a finite loop space at the prime p has an algebraically defined maximal
torus, and a Weyl group which is a finite p-adic reflection group. The finite
reflection groups over the complex numbers were classified by Shephard and
Todd [ST]. Clark and Ewing [CE] determined which of these were defined
over the p-adics for p not dividing the group order, and demonstrated how to
produce a finite loop space at the prime p in this "non-modular" case. There
remains a well defined list of questions, one for each prime dividing the order
of each of the groups in the list of Shephard and Todd.
There is essentially only one known example of a connected finite loop space
at the prime two, which is not the 2-completion of a compact Lie group. All
other known examples are given by taking products. The example in question
is the space DI(4) ^-- 1 BDI(4) constructed by Dwyer and Wilkerson [DW2].
The Weyl group of DI(4) is Z/2 x GL(3,1F2 ), acting as a three dimensional
2-adic reflection group. It is group number 24 in the list of Shephard and
Todd. The corresponding "root system" has 21 pairs of opposite roots, so
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the dimension of DI(4) is 3 + 2 x 21 = 45. The 2-adic integral cohomology
of BDI(4) is a polynomial algebra on three variables in degrees 8, 12 and 28,
corresponding to (twice) the degrees of the fundamental invariants of the Weyl
group. The mod two cohomology is the Dickson algebra on four generators
in degrees 8, 12, 14 and 15.
Dwyer and Wilkerson constructed the space BDI(4) as a homotopy colimit
as follows. Consider the category whose objects are the groups (Z/2)" for
1 < n < 4, and whose arrows are the injective homomorphisms between
these groups. They constructed a functor to the homotopy category taking
the following values:

Z/2 H BSpin(7)2 (Z/2)2 B(SU(2)3/ ± 1)'
(7L/2)3 H B(T3>iZ/2)2 (Z/2)4 H B(Z/2)4.

They then proved that this could be lifted to a functor to the category of
spaces, so that they could then take the homotopy colimit. Some of the maps
involved do not exist until the spaces have been 2-completed.
The homotopy colimit of the above functor over a full subcategory consisting
of a single object plays the role of the classifying space of the "normalizer"
of the corresponding elementary abelian 2-subgroup in DI(4). For example,
the normalizer in this sense of the subgroup (7L/2)4 is a non-split extension
of this elementary abelian subgroup by its automorphism group GL(4,1F2 ).
It is interesting to speculate on the existence of a suitable algebraic system of
dimension 45 which should play the role of a tangent space at the identity for
DI(4). It should be almost, but not quite, a Lie algebra over the 2-adics. One
tempting candidate is the set of 3 x 3 skew-hermitian matrices over a suitable
2-adic version of the Cayley numbers. This would have the right dimension,
but on the face of it, it would seem to contain the wrong 21-dimensional Lie
subalgebra (C3 instead of B3). But there may be some twisted version of this
which works.

7. Conway's group Co3

Conway's sporadic simple group Co3 was discovered as part of a series of
groups arising from Leech's close packing of spheres in twenty-four dimen-
sions [Co,CS]. It is defined as the stabilizer of the origin and a type three
vector in the group of automorphisms of the Leech lattice, and has order
210.37.53.7.11.23. The following theorem was proved in [Co3]:

Theorem 7.1. There is a map from BCo3 to BDI(4), which induces an
embedding

H* (BDI(4),1F2) 9 H' (BCo3i1F2 )
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in such a way that the latter is a finitely generated module over the former.

Prior to the proof of this theorem, nothing was known about the mod two
cohomology ring of BCo3 (apart from in degrees one and two). It is still not
known whether the mod two cohomology of BCo3 is a free module over the
rank four Dickson invariants, which amounts to the question of whether it
is a Cohen-Macaulay ring. It is known, however, that the cohomology of a
Sylow 2-subgroup of Co3 is not Cohen-Macaulay, because there are maxi-
mal elementary abelian 2-subgroups of different ranks, so that it is not even
equidimensional. But all maximal elementary abelian 2-subgroups of Co3
have rank four.
The idea of the proof of the above theorem is as follows. Let P be a Sylow
2-subgroup of Co3i of order 210. Then Z(P) = (t,) has order two, and C =
Cc03(t1) is a double cover of the simple group S6(2). Now the Weyl group of
type E7 is Z/2 x S6(2), and so there is an obvious map from S6(2) to SO(7),
which lifts to a map from C to Spin(7).
There is a normal fours group (t1, t2) in P whose normalizer N is a solvable
maximal 2-local subgroup of Co3 of order 210.33. There is also a normal
subgroup V = (t1, t2i t3, t4) = (Z/2)4 whose normalizer X = NCo3(V) is a
non-split extension of (Z/2)4 by GL(4,1F2). It turns out that the natural map
from the homotopy colimit of the diagram formed by the classifying spaces
of C, N, X and their intersections to the classifying space of Co3 is a mod
two cohomology equivalence. This is proved essentially by the methods of
Jackowski and McClure [JM].
Now we have already chosen a suitable map from C to Spin(7), and hence
from BC," to BSpin(7)2. So we choose a map from BN2 to B(SU(2)3/f1
> GL(2,F2))2 (the classifying space of the "normalizer" of (Z/2)2 in DI(4))
and a homotopy equivalence from BX2 to the classifying space of the "nor-
malizer" of (Z/2)4 in DI(4), in such a way that the diagrams obtained by
restricting to intersections commutes up to homotopy.
Finally, in order to obtain a map of classifying spaces, it is necessary to lift to
strictly commuting maps. There is an obstruction theory for doing this, and it
turns out that the obstruction lies in a group isomorphic to Z/2. Fortunately,
there is just enough room for maneuver to change this obstruction to zero,
and so a map of classifying spaces is obtained.

8. Some nonexistent finite simple groups

In his 1974 paper [So], Ron Solomon considered the problem of classifying
finite simple groups in which the Sylow 2-subgroups are isomorphic to those
of Conway's group Co3. In this paper, he proved that Co3 is the only such
group. In the process of proving this, he was forced to examine a configuration



Cohomology of Sporadic Groups 21

in which the centralizer of an involution is isomorphic to Spin(7,Fq) (q an
odd prime power), possibly with some decoration of odd order at the top
and bottom. In fact, only the case where q is congruent to 3 or 5 (mod 8)
was relevant to the problem he was trying to solve, because for other values
of q the Sylow 2-subgroup is larger than that of Cos. However, we shall be
interested in all odd prime powers q.
The final result of Solomon's analysis was that if G is a finite group with an
involution z satisfying

02
CG(z)l(O2,CG(z) n

02
CG(z)) Spin(7,1Fq)

then z E Z*(G) (that is, zO2,(G) E Z(G/02'(G))). In particular, G is not
simple. In order to reach this conclusion, he was obliged to examine a con-
figuration which appeared to be consistent at the prime two, but which gave
rise to a contradiction upon examining a Sylow p-subgroup, where p is the
prime of which q is a power.
Despite the nonexistence of Solomon's groups, they have 2-completed clas-
sifying spaces. Namely, Dwyer and Wilkerson [DW3] show that for each
2-adic unit q, there is a (unique up to homotopy) self homotopy equivalence
Tq : BDI(4) --* BDI(4) whose effect on degree 2i integral cohomology is
multiplication by q'. In fact, they prove that the group of homotopy classes
of self equivalences inducing the identity on mod two cohomology is precisely
the group of such operations 'I' ; since minus the identity is in the Weyl
group, jpq is indistinguishable from '-q, so the group is isomorphic to the 2-
adic units modulo ±1. For an odd integer q, write BSol(q) (Sol for Solomon)
for the space defined by the following homotopy pullback diagram:

BSol(q) BDI(4)

0
idxYq

BDI(4) BDI(4) x BDI(4).

The following diagram of maps of classifying spaces commutes up to homo-
topy:

B(Z/2 x M12) BCo3

4-

B(Z/2 x G2(q)) -* BSpin(7,Fq) -* BSol(q)

B(7G/2 x G2) -# BSpin(7) -# BDI(4).
Using the Eilenberg-Moore spectral sequence on the pullback diagram defin-
ing BSol(q), one can easily deduce that the Poincare series for the cohomology
is given by
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00

E dim.2H'(BSol(q),I'2) _
(1+t8)(1+t12)(1+t14)(l+t)

i=o (1 - t8)(1 - t )(1 - t )(1 - tls)'

We have maps

H* (BDI(4), F2) -+ H * (BSo1(q), F2) -+ H * (B(Z/2)4, F2 )GL(4,F2)

whose composite is an isomorphism. Using this, one can show that, as an
algebra over the Steenrod algebra, H* (BSo1(q), F2) splits as a tensor product
of H* (BDI(4), F2) with the cohomology of the fiber of BSo1(q) -+ BDI(4);
namely with H*(DI(4), F2). The latter is generated by an element A in degree
7 whose fourth power is zero, and two elements µ and v of degrees 11 and 13
which square to zero. The action of the Steenrod algebra is determined by
Sg4(A) = p, Sg2(µ) = v, and Sq'(v) = A2.
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1. Introduction

1.1. Summary

This is an outline of recent work aimed at understanding the finiteness prop-
erties F, FP,,, FD and FP of the group N in a short exact sequence

QN-G -»

where Q acts properly discontinuously by isometries on a space having, in
some rather general sense, non-positive curvature. Our results apply, in par-
ticular when Q is a free group, or a discrete cocompact subgroup of a virtually
connected linear semi-simple Lie group, or an S-arithmetic subgroup of a re-
ductive algebraic group of global rank zero.

1 This work was begun during a 1992 Semester on Geometric Methods in Group
Theory at the Centra de Recerca Mathematica of the Universitat Autonoma
de Barcelona. It was continued at the Durham Symposium, partially sup-
ported by the National Science Foundation and by means of travel grants
from the Deutsche Forschungsgemeinschaft. We are grateful for all of these
sources of support.
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1.2. The finiteness properties

Recall that a group G is of type F (respectively if there exists a
K(G, 1) -complex (respectively a free G-resolution F -» Z) with finite n-
skeleton. Both F, and FP1 are equivalent to G being finitely generated. Con-
dition F2 is equivalent to G being finitely presented, and the weaker (but pos-
sibly equivalent2) condition FP2 is equivalent to G = H/P with H finitely
presented and PiH a perfect normal subgroup. G is of type F (respectively
FD) if there exists a finite (respectively finitely dominated) K (G, 1) -complex,
and of type FP if there exists a finite projective G-resolution P -» Z. It is
not known if FD implies F.

1.3. The Problem

It is easily observed that if both N and G in §1.1 are of type F (respectively
so is Q. And if both N and Q are of type F. (respectively

so is G. Thus we are left with the problem of studying the behaviour of N
under the assumption that both G and Q are of type F (respectively FP,,),
and we shall from now on make this assumption without specially mentioning
it. The case when G is free of rank 2 and Q = Z shows drastically that N
will not, in general, be of type F (respectively Hence the Problem
is to find computable parameters which control the exceptional case that N
succeeds in being of type F (respectively In case G is of type F we
will also be interested in when N is of type FD (respectively FP).

1.4. The case when Q is Abelian

Our Problem has been previously investigated in case Q is Abelian. In
the papers cited below, subsets En (G) and En(G; Z) of the R-vector space
Hom (G, R) are defined which should be thought of as "geometric invariants",
for they parametrize the Problem in the following sense:

Theorem. ([BNS], [BR], [R1]) Consider the exact sequence in §1.1 with
Q Abelian and G of type F (respectively F
(respectively if and only if the image of ir` : Hom(Q, R) Hom(G, R)
is contained in En (G) (respectively E"(G;Z)).

The geometric invariant E1(G) was first studied in the special context of
metabelian groups G in [BS 1 ] as a tool to characterize finite presentability of
G. For arbitrary groups G, E' (G) was introduced in [BNS] and subsequently
extended to n > 2 in [BR] and [R2] (see also [R1]). The desire to prove the
above theorem has always served as a guideline. El (G) has been computed
in many cases, whereas the higher invariants are more difficult to compute.

2 Bestvina and Brady have recently shown that F2 54 FP2
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For further information see the manuscript [BS2] or Holger Meinert's survey
article in this volume.

1.5. The set up

A group Q acts properly discontinuously on a space M if every point x E M
has a neighbourhood U such that {q E Q I qU fl U 0} is finite.
In the proof of the above theorem one starts by choosing a basis for the
torsion-free part of the (finitely generated) Abelian group Q. This provides
a properly discontinuous and cocompact translation action of Q on the Eu-
clidean space E-, and this action is crucial throughout the proof. We will
refer to this as the "flat case".
For our generalization, (the "non-positively curved case") we assume the
group Q in §1.1 acts properly discontinuously and cocompactly by isome-
tries on a "convex geodesic space" M. This is defined in §2, but one should
think of prominent examples such as Euclidean and hyperbolic spaces, uni-
versal covers of closed manifolds with non-positive sectional curvature, locally
finite trees and, more generally, locally finite Euclidean buildings. In partic-
ular, Q could be any discrete cocompact subgroup of a virtually connected
linear semi-simple Lie group G acting on the homogenous space G modulo
a maximal compact subgroup; or Q could be an S-arithmetic subgroup of
a reductive algebraic group of global rank 0, acting on the product of the
Bruhat-Tits buildings associated to the places in S. We note that our most
fundamental result, Theorem 5, does not explicitly require cocompactness.
It will be convenient to fix a group of isometries G of M with the property
that the action of Q on M is given by a monomorphism 0 : Q -4 G. We
will prove that N is of type F if and only if the action 07r : G -4 G is
"(n - 1)-connected" in a sense to be defined. Now, other actions p : G -*
G, with p(G) not necessarily properly discontinuous or cocompact, can be
"(n - 1)-connected"; so, as in the flat case, we use this property to define
a subset SE"(G) of the space R(G, G) = Hom(G, G) of all G-actions (i.e.
representations) into G. The group G is given the compact-open topology,
and since G is finitely generated R(G, G) can be viewed as a subspace of a
finite product of copies of G.
There is also an "(n - 1)-acyclicity" property having a similar relationship
to FP" and leading to a corresponding subset SE" (G; Z) of R(G, G).

1.6. The main results

Theorem A. Both SE" (G) and SE"(G; Z) are open subsets of R(G, G).
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Theorem B. Consider the short exact sequence in §1.1 and assume we are
given a properly discontinuous and cocompact action 0 : Q - G. Then N
is of type F. (respectively FP,,) if and only if 07r E SE"(G) (respectively
07r E SE"(G;Z)).

Theorem A generalizes Theorems A in [BNS], [BR] and [R2], and Theorem
B generalizes [BNS; Theorem B1], [BR; Theorem B] and [R,, Satz C], all
of which treat the flat case. As in those papers, by combining Theorems A
and B we get an openness result for the finiteness properties F,, and FP,, -
something which is intelligible without any knowledge of SE". Let R0(G, G)
denote the subspace of R(G, G) consisting of all cocompact actions p : G -*
G such that p(G) acts properly discontinuously on M. Then we have

Theorem C. The set of all p E Ro(G, G) with ker(p) of type F. (respectively
FP") is open in Ro (G, G).

Remark. Weil [W] has proved the following: If G is a Lie group and p E
R(G, G) has the property that H' (G, g) = 0, then every p' sufficiently close
to p is obtained from p by conjugation in G (and hence has the same kernel).
Thus Theorem C is only of interest when Weil's result or some other "local
rigidity" theorem does not apply.

If, in §1, G is of type F then there exists a finite-dimensional K(N, 1)-
complex; so N has type FD (respectively FP) if and only if N has type
F" (respectively FP"), where n is the dimension of some K(G, 1) -complex
(respectively projective G-resolution P -» Z). Hence we have:

Corollary D. Assume that the group G in §1.1 is of type F. The set of all
p E 1 0(G, G) with ker(p) of type FD (respectively FP) is open in R0(G, G).

In §6.5 we give a description of SE"(G; Z) in terms of the vanishing of homol-
ogy groups of G in dimensions < n with coefficients in the Novikov modules
ZGe (these are generated by completions of the group ring ZG with respect
to certain filtrations on G):

Theorem E. With hypotheses as in Theorem B, N is of type FP" if and
only if HH(G; /lice) = 0 for all p < n and all boundary points e of M.

1.7. The invariants E" (G) , E" (G; Z)

These are true generalizations of the Bieri-Neumann-Strebel-Renz geometric
invariants, and are introduced in §3.2 They are more subtle than the previ-
ously mentioned "symmetrized" versions SE" (G), SE" (G; Z), but are not
relevant to our main theorems. However the example discussed in §3.4, of
G = PSL2(R) and n = 0, suggests that they are of independent interest.
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2. Convex geodesic spaces

2.1. The spaces

Let (M, d) be a metric space. If a, b E M, a geodesic segment from a to b is
an isometric embedding [0, d(a, b)] - M. A geodesic ray based at a E M is an
isometric embedding [0, oo) *-+ M taking 0 to a. The metric space (M, d) is
a length space if there is a geodesic segment from any point to any other point.
The metric d is proper if for each a E M, the map d(a, ) : M -+ Ill; is a proper
map (i.e., preimages of compact sets are compact); proper metric spaces are
locally compact, and all closed-and-bounded subsets are compact. The length
space (M, d) is convex if whenever w, and w2 are geodesic segments linearly
reparametrized by [0, 1], d(w, (t), w2 (t)) is a convex function of t.
A convex geodesic space is a convex length space M with a proper metric
such that for every a # b E M, the geodesic segment from a to b can be
prolonged to a (not necessarily unique) geodesic ray based at a.

2.2. Examples

Examples of convex geodesic spaces are (1) Em ; (2) Hyperbolic space H7; (3)
locally finite affine buildings; (4) complete simply connected open Rieman-
nian manifolds of non-positive sectional curvature; (5) piecewise Euclidean
CAT (0) complexes, in the sense of [Br], in which all closed-and-bounded sets
are compact and no link is contractible. Every convex geodesic space is a
"Busemann space" in the sense of [Bo]; we remark that the term "Busemann
space" has different meanings in other places. It follows (see [Bo]) that if Q
acts properly discontinuously and cocompactly on a convex geodesic space M
(as is usually the case in this paper) then either Q is hyperbolic in the sense
of Gromov or M contains a totally geodesic embedding of a Minkowskian
plane.

2.3. Horoballs

Let M be a convex geodesic space. If a E M, let Ea denote the set of all
geodesic rays in M based at a E M, topologized as a subset of MAo°00) with
the compact open topology. It is not hard to show that Ea is compact and
metrizable. For each e E E. and t E [0, oo) the closed horoball HB(e,t) is
defined to be the closure of U{Eu_t(e(u)) I u > t}, where Pr(x) denotes the
open ball in M about x of radius r.
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3. The E-invariants

3.1. Connectivity at infinity

Let (M, d) be a convex geodesic space and let G be a group of type F
acting on M by isometries. Choose a K(G, 1) complex Y having finite n-
skeleton and let X = Y be the universal cover on which G acts by covering
transformations. Then we can construct a G-equivariant map h : X" -+ M
as follows. We pick a base point * E M and a finite set V of vertices of
X containing exactly one vertex in each G-orbit of X°. Define h(v) = *
for each v E V and extend equivariantly to X°; then extend equivariantly
skeleton by skeleton subject to the condition that for each cell o of dimension
< n, h(o) lies in the closed convex hull of h(6,).
Each geodesic ray e E E. based at * gives rise to a decreasing filtration
(X(e,t))t,0 of X" by subcomplexes: X(e t) is defined to be the largest subcom-
plex of X" lying in h-' (HB(e,t)) . This filtration determines a sort of "end"
of X" defined by e, since different choices of h : X" -* M lead to equivalent
filtrations. Thus we may talk of connectivity of X" in the direction of this
"end". For p > -1 we say that X" is p-connected in the direction e if there
is a constant A > 0 such that for each t > 0 and each integer -1 < q < p
every map f : Sq -+ Xe,t+a) extends to a map f : Bq+' _4 When
q = -1 this says that each is non-empty.
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Proposition 1. For p < n - 1, whether or not X' is p-connected in the
direction e depends only on G, its action on M, and the ray e, not on the
choice of X (i.e. of Y), nor on the choice of h.

3.2. The invariants

Let G be a given group of isometries of M and R(G, G) = Hom(G, G) as in
§1.5. Define EP(G) C_ R(G, G) x E. to be the set of all pairs (p, e) with the
property that X' is (p - 1)-connected in the direction e. By Proposition 1,
EP(G) is an invariant of the group G when p < n - 1.
There is some redundancy in the product R(G, G) x E.. If H is a group
of isometries of M which fixes the base point * and normalizes G then H
acts both on R(G, G) and on E, where the effect of the action of ry E H
on p E R(G, G) is given by The subset EP(G) C R(G, G) x E. is
invariant under the diagonal action of H. Hence one could also define EP(G)
to be a subset of the space R(G, G) xH E. of all orbits under the diagonal
H-action. This is particularly convenient if H acts transitively on E., for if
so one has an isomorphism R(G, G) x H E. =' R(G, C)/Heo , where Heo < H
is the stabilizer of some chosen "base ray" eo E E.

3.3. Connection with the flat case

In the flat case we have M = El and G = Translation group of El. We
can take H to be the group {±idEl }. Then Heo = {1} and we recover the
original invariant EP(G) C Hom(G, R) described in §1.4.

3.4. PSL2(IR)-action on If

Here we discuss the case where M is the hyperbolic plane H2 and G =
PSL2(IR) acting on the upper half plane model. For the base point * E IF we
take the imaginary unit i E C (which corresponds to the centre in the unit
disk model). The stabilizer of * in PSL2(R) is then given by

H={±(ab a) a2+62=1}.

Thus H is homeomorphic to a circle S' and acts transitively on the space of
rays E. In the unit disk model H is the group of rotations around *. We
identify each e E E. with its endpoint on the boundary of IV. In the upper
half plane model oo is a canonical endpoint, and its horoballs are given by
HB(,t) = {z I Im(z) > t}. If one thinks of the invariant EP(G) as a subset
of R(G, PSL2(R)) then it suffices to restrict attention to this filtration. Thus
p : G PSL2(IR) is in EP(G) if and only if X is (p - 1) -connected in the
direction oo. Given a fixed action p one can study the behaviour of p with
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respect to the various e E E. by studying the orbit p" of p in R(G, PSL2(R))
under H with respect to oo.
Let us examine E°(G). Taking the K(G, 1) -complex Y with a single vertex
makes it clear that a given representation p : G -* PSL2(R) is in E°(G) if
and only if Im (G*) , i.ethe set of all imaginary components of the g* E C, is
unbounded. In other words: the point oo E alfP is an accumulation point of
G* in the horocycle topology. This should be compared with the much weaker
condition that oo is an accumulation point of G* in the Euclidean topology
of the compactified unit disk model of W , which simply means that the
absolute values of points in G* are unbounded. Note that if p(G) = SL2(Z)
then oo is an accumulation point of G* in the Euclidean topology but not
in the horocycle topology.
The situation can be analyzed further under the assumption that p : G --
PSL2(R) is a discrete representation (i.e., p(G) is a discrete subgroup of the
Lie group PSL2(R)), for in that case one can say rather more about the
behaviour of horocyclic accumulation points of G* on ally . Suppose oo is
one of them and is, at the same time, fixed under some parabolic element
of p(G). Then G* contains subsets A C_ G* with Im (A) unbounded but
Re(A) bounded; oo is then said to be a point of approximation. Points of
approximation cannot lie on the boundary of any convex fundamental polygon
but parabolic fixed points do (see [Be; p. 261]). Hence if p E E°(G) then oo
cannot be a parabolic fixed point. In fact, assembling results from Chapters
9 and 10 of [Be] one gets:

Proposition 2. Let p : G -+ PSL2(R) be a discrete representation of the
finitely generated group G. Then the following are equivalent:
(i) p E E°(G);

(ii) oo E 9W is a point of approximation;
(iii) oo is not on the boundary of any convex locally finite fundamental do-

main.

Corollary 3. Let p : G --4 PSL2(R) as in Proposition 2. Then we have:
(a) p" C_ E°(G) if and only if G\ffF is compact.
(b) The complement of p" fl E°(G) in p" is countable if and only if G\

has finite area.

Remark. Let p : G -> PSL2(R) be as in Proposition 2, and assume G has a
fundamental domain with finite area. Then p E E° (G) if and only if oo E a]HP
is not a parabolic fixed point. The finite area assumption excludes the case
that p(G) is "elementary", so the G-orbit of each point of alp is dense in
aH' . Hence, the set of parabolic fixed points is either empty or dense in al p,
and we find that if p(G) is not cocompact then the complement of E°(G)flp"
in p" is dense in p'.
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3.5. Independence of base point

It was a matter of convenience to define EP (G) to be a subset of R(G, G) x E, ,

or, if H fixes * and normalizes G, as a subset of R(G, G) X H E.. This
apparent dependence on * E M can be removed. Say that e E E. and
e' E E,, are parallel if {d(e(t), e'(t)) I t > 0} is bounded. It is shown in
[H; 2.2] that given e and *' there is a unique e' parallel to e (the proof
in [H], ostensibly for CAT (0) spaces, works for convex geodesic spaces too).
Since parallel rays e and e' lead to equivalent filtrations (X(e,t)) and (X(11,,,,)),
X' is (p - 1)-connected in the direction e, using *, if and only if it is
(p - 1) -connected in the direction e', using *'. So, writing E for the set of
"parallelism classes" of geodesic rays, we can equally well define EP(G) to be
the corresponding subset of R(G, G) x E, or of R(G, G) X H E if H is the
normalizer of G in the group of all isometries of M.

4. Discussion of the Theorems

4.1. The symmetrized invariants

As before we are given a group G, a convex geodesic space M with a base
point * E M, and a group of isometries G of M. In the flat case when G =
T(E'), the 1-dimensional translation group, it was fairly easy (but crucial) to
observe that the invariant EP(G) was an open subset of the space R(G, T(E' ))
for p < n. From the remark at the end of §3.4 we see that this will not, in
general, be the case. For an openness result we have to replace EP(G) C_
R(G, G) x E. by a cruder version of it. This symmetrized invariant is the
subset of R(G, G) defined by

SEP(G) = {p I (p,e) E EP(G), for all e E E,}.

Thus a homomorphism p : G -+ G is in SEP(G) if X is (p - 1) -connected
in all directions e E E..
In the flat case where G = T(1E'), SEP(G) is just the intersection of EP(G)
with its antipodal set -EP(G). In the example G = PSL2(R) of §3.4 it is the
intersection nhEH EP(G)h
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4.2. The main results

Theorem 4. SE"(G) is an open subset of )Z(G, G).

As in the flat case, this openness result is based on a criterion for the action
p E R(G, G) to be in En(G) in terms of a finite collection of small homotopies.
In the flat case this was called the "E"-criterion" (see [Bi] or [BS2]) and its
proof, by induction on n, was independent of the Theorem cited in §1.4.
In the non-positively curved case, however, a proof of the analogous "SE"-
criterion" is intimately bound up with the proof of:

Theorem 5. Let p E R(G, G) be such that p(G) acts properly discontinu-
ously on M. If p E SE"(G) then the kernel of p is of type F.

We briefly discuss the proofs of Theorems 4 and 5. With notation as in §3.1,
one wishes to find R > 0 such that the pair (X", X"(R)) is n-connected;
here X"(R) denotes the largest subcomplex of X" lying in h- I (BR (*)). The
complex X"(R) is acted on by N = ker(p), and if the p(G)-action on M is
properly discontinuous the map N\X" -> M covered by h is proper. The
last two sentences imply that X"(R) is a cocompact (n - 1)-connected N-
complex, so N has type Fn.
The proof that the pair (X", X"(R)) is n-connected is delicate. By "ele-
mentary expansions" we attach finitely many G-orbits of cells to X to get a
stronger version of (n - 1)-connectedness in which the constant A (see §3.1)
is zero. The fact that E. is compact is crucial in that, when we wish to
perform homotopies of maps f : (BP, SD-1) -* (XP, XP(R)) in different di-
rections e, compactness allows us to only use finitely many directions. We
deform f, rel SP-', to a map into XP(R) by small homotopies in different
directions, and then the use of only finitely many directions bounds certain
important positive numbers away from 0. The construction of these small ho-
motopies requires the "A = 0" connectedness conditions; on the other hand,
deriving the "A = 0" connectedness actually requires the same kind of small
homotopies in lower dimensions. Thus the proofs of Theorems 4 and 5 com-
prise one big induction. The details involve ensuring that the homotopies are
suitably "Lipschitz over M" in order to have a sufficiently strong inductive
hypothesis.
The simultaneous proof of Theorems 4 and 5 is long. It is based on ideas and
techniques from the flat cases - more precisely: from the proof of the "E"-
criterion" (see [BS2] or [Bi, Theorem A]) and the Theorem stated in §1.4
(and in [Bi] as Theorem E). The present generality entails new complications
and technicalities - mostly coming from the fact that G does not act trivially
on R(G, G) any more. We are preparing a detailed paper.
We now turn to the converse of Theorem 5. There is an obvious necessary
condition for an action p E R(G, G) to be in SEP(G): p has to be in SE°(G)
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- the point being that this latter condition depends only on the image p(G)
rather than on G itself: every horoball of M must contain a point of the
orbit G* = p(G)*. In the case when M is the Euclidean m-space or the
hyperbolic plane (see §3.4) this necessary condition is actually equivalent to
saying that the G-action on M is cocompact. Indeed, we do find a converse
to Theorem 5 in general under the cocompactness assumption:

Theorem 6. Let p E R(G, G) be such that p(G) acts properly discon-
tinuously and cocompactly on M. If the kernel of p is of type F. then
p E SE-(G).

The assumption in Theorem 6 that p(G) be cocompact may be too strong.
But we have doubts that the weaker condition p E SE°(G) would be suffi-
cient. We do, however, have necessary and sufficient conditions in terms of
the subspace h(X") C M.

Proposition 7. (a) If ker(p) is of type F. then X and h : X" -> M
can be chosen so that h-'(h(Q)) is (n - 1) -connected for each cell Q of X
of dimension < n - 1. (b) If the choice referred to under (a) is made then
p E SE"(G) if and only if h(X") C M is (n-1)-connected in every direction
e E E..

Here, the definition of connectivity of h(X") in the direction e has to be trans-
lated from the definition for X" in §3.1 by using the filtration (h(Xe,t)))t>o
for e E E..

5. Horo-connectivity

5.1. horo-p-connectedness

We continue to discuss the set up of §3.1. A map f : Z -+ X" is proper in
the direction e if for each t > 0 there is a compact subset C C Z such that
f (Z - C) C X(e t). We say X is horo-p-connected rel e if for every 0 < q < p
and every map f : 1184 -4 X9 which is proper in the direction e there is a map
f : 1184 x [0, oo) -* X4+' extending f which is also proper in the direction e.
For p < n this is well-defined; but we shall also need it for p = n, and until
now Xe tj has not been defined. To get around this, simply extend the map
h to the (possibly not locally finite) complex X"+' in the manner described
in §3.1. This will not cause problems in view of Theorem 8 below.
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5.2. Alternative description of SE"(G)

In the flat case, when M = E' and G = translations, it was shown (see [Bi],
[BS2]) that X is horo-n-connected rel e if and only if X" is (n-1)-connected
in the direction e, and this established an alternative description of the "flat"
invariant E" (G) . But in the present generality we are unable to prove either
implication in that theorem. However, we can prove the desired result if we
look at all directions e simultaneously:

Theorem 8. X is horo-n-connected rel e for every e E E. if and only if
X" is (n - 1) -connected in all directions e E E.. Hence

SE"(G) = {p E R(G, G) I X is horo-n-connected in every direction e}.

5.3. How to check for horo-p-connectedness

If we pick a proper base ray a in R and a base ray e in X' which is
proper in the direction e, the proper homotopy classes of proper maps in the
direction e from (Rq, a) to (X"+', e) form horo-homotopy groups 7re(X, e)
for q > 1 (pointed sets for q = 1). The details are so precisely analogous to
the discussion of the groups irq (X, e) in [BT] that we refer the reader to §2 of
that paper for proofs of all assertions in this subsection. Clearly, X is horo-
p-connected rel e if and only if X is horo-O-connected rel e, and 7rq (X, e) is
trivial for 1 < q < p < n. As in [BT; 2.9-11], there are short exact sequences
of groups for 2 < q < n, and pointed sets for q = 1:

{1} -* 1 m'{irq(X 1 e)} -4 irq(X, e) -+ 1im{7rq_11 X" ' e)} - {1}.

Here, i ranges over Z+, and the inverse sequences of ordinary homotopy
groups have base points along e, and bonds induced by e in the obvious way.
An inverse sequence of groups G, +- G2 - - - is semistable or Mittag-Lefer
if for any k the images in Gk of the groups G;, j > k, are almost all the
same. If those images are almost all trivial, the inverse sequence is pro-trivial.
Thus, (see [MS; II §6]) we have, for p > 1:

Proposition 9. X is horo-p-connected rel e if and only if there exists
exactly one proper homotopy class of proper rays in the direction e, and,
using any such ray e as base ray, the groups {irq(Xn+l, e)}; are pro-trivial
for 2 < q < p - 1 and semistable for q = p.
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6. Homological companion results

All results in the previous sections have homological analogues which we
collect here.

6.1. The homological invariants

We continue to discuss the set up of Section 3.1.
Fixing a commutative ring R with 10 0, we say that X" is p-acyclic (over
R) in the direction e if there is a constant A > 0 such that for each t > 0 the
inclusion Xe,e+a> Xn,t) induces the zero map on R-homology in dimensions
< p. Analogous to Proposition 1 we have that for p < n - 1 p-acyclicity
(over R) in the direction e depends only on R, G, its action on M and the
ray e. Given a group G of isometries of M we can now consider the subset
EP(G, R) C_ R(G, G) x E. consisting of all pairs (p, e) with the property that
X" is (p - 1)-acyclic in the direction e.
The symmetrized invariant is the subset SEP(G; R) C R(G, G) defined by

SEP(G; R) = {p I (p, e) E EP(G; R), for all e E E,},

6.2. The main results

Theorem 4'. SEP(G; R) is an open subset of R(G, G).

Theorem 5'. Let p E R(G, G) be such that p(G) acts properly discontin-
uously on M. If p E SEn(G; R) then the kernel of p is of type FPn over
R.

Theorem 6. Let p E R(G, G) be such that p(G) acts properly discon-
tinuously and cocompactly on M. If the kernel of p is of type FPn then
p E SE" (G; R) .

6.3. Horo-acyclicity

We orient the cells of Xn}1 so that C°°(X"+1), the R-chain complex of
possibly infinite locally finite cellular chains of Xn+1 is defined. Here, in
dimension (n+1) it is understood that we only include chains whose boundary
is well-defined. Let C ; (Xn+l) denote the subcomplex of C°°(Xtt}1) consisting
of those chains which are locally finite with respect to the filtration (X( ij )e>o
i.e., for each t Xn tj contains all but a compact subset of the support of the
chain. The q-th homology of this chain complex, Hq (X) , is the qth horo-
homology group of X rel e (with R-coefficients). We say that X is horo-p-
acyclic rel e if He(X) = 0 for all q < p, (reduced homology for q = 0).
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Theorem 8. X is horo-n-acyclic rel e for every direction e E E. if and
only if X is (n - 1) -acyclic in all directions e E E. Hence

SE" (G; R) = {p E R(G, G) I X is horo-n-acyclic in every direction a}.

6.4. How to check for horo-p-acyclicity

Everything in §5.3 has a homological analogue, changing homotopy groups to
homology groups. The relevant exact sequence can be found in [Ma].

6.5. Entrance of group homology

The action p : G -* G together with an end e c E. defines a filtration of G
by "e-horoballs": for each t > 0 we put

G(e,t) = {g E G g* E HB(e,t)}.

Let RG denote the set of all formal (possibly infinite) R-linear combinations
of elements of G, and RGe C_ RG the subset of those whose support is locally
finite in the direction e, in the sense that, for each t, all but finitely many of
its points lie in G(e,t). This is a right RG-module which we call the Novikov
module, (compare [N], [S]). It is clear that there is a natural homomorphism
0y : HP(G; RGe) He(X) which is an isomorphism for p < n and an
epimorphism for p = n. Hence, the vanishing of H,(G; RGe) for p < n
implies that X is horo-n-acyclic in all directions e. In the flat case, the
converse is true (see [BS2]) but in the present non-positively curved case we
only have

Theorem 10. X is horo-n-acyclic in all directions e E E. if and only if
HD(G; RGe) = 0 for all p < n and all e E E.. Hence SE"(G; R) is the set

{p E R(G, G) I H,(G; RGe) = 0 for all p < n and all e E E.}.
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Cyclic Groups Acting on Free Lie Algebras

R. M. Bryant
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1. Introduction
The purpose of this note is to study a conjecture of M. W. Short [5] which
is concerned with some special cases of the problem of determining the fixed
points of a finite group acting on a free Lie algebra. Short formulated his
conjecture on the basis of evidence obtained by hand and computer calcu-
lations. The main results of this note explain the theoretical significance of
the numbers occurring in Short's conjecture and show that this conjecture is
equivalent to some simple and natural conjectures concerning free Lie rings.

For any positive integer m and any commutative ring R with identity let
L(R, m) denote the free Lie algebra over R on m free generators x1, ... , xm.
Let G(m) be a cyclic group of order m generated by an element g and let
G(m) act (on the right) as a group of Lie algebra automorphisms of L(R, m) in
such a way that x;g = xi}1 (1 < i < m - 1) and xmg = x1. For each positive
integer n let L. (R, m) denote the R-submodule of L(R, m) spanned by all
monomials in x1,.. . , x,n of degree n: thus L(R, m) = ®n11 Ln(R, m) and
each Ln(R, m) is G(m)-invariant. This note is concerned with the problem
of obtaining information about Ln(R, m)G(m), the set of elements of Ln(R, m)
which are fixed by all elements of G(m) (or, equivalently, fixed by g). We
shall regard L(R, m) and L. (R, m) as right RG(m)-modules in the obvious
way.

Let L(m) = L(Z, m) where Z is the ring of integers. Furthermore, if p is a
prime number, write lFp for the field of p elements and M(p) = L(1F p). For
positive integers m and n let

.f (m, n) = 1 F a(d)orn/d
mn din.

(d,m)=1

Here p denotes the Mobius function and (d, m) denotes the greatest common
divisor of the positive integers d and m.
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Conjecture A, (M. W. Short [5]). For any prime number p and any
positive integer n, has dimension f (p, n) over F.

It is easy to see that the conjecture is true in those cases where p does not
divide n (see [5]) and Short gave further evidence obtained partly by com-
puter. He has verified that the conjecture is true in the following cases: p = 2,
n <, 20; p = 3, n 5 9; and p = 5, n 5 5. The evidence is therefore quite strong
in the case where p = 2. This was in fact the motivating case because the
problem of determining was posed some time ago by L. G.
Kovacs (see Problem 11.47 of [4]).
For any finite group G let vg be the (norm) element EhEG h of the group ring
ZG. Clearly, for any (right) ZG-module U, UvG C UG, where U° is the set of
elements of U fixed by G. Also, for all u E U°, uvG = JGIu, so U°/UvG has
exponent dividing JGI. In particular, when G is cyclic of order p, U°/UvG
may be regarded as a vector space over IF,,.

It will be shown in this note that Conjecture A is equivalent to the following
conjecture.

Conjecture B. For any prime number p, L(p)°(P) = L(p)vG(,).

To be more precise, it will be shown that Conjecture A holds for given values
of p and n if and only if Since L(p)G(P)/L(p)ua(p) is
isomorphic to H°(G(p), L(p)), the zero-dimensional Tate cohomology group
of G(p) with coefficients in L(p) (see Chapter XII of [2]), Conjecture B asserts
that H°(G(p), L(p)) = 0. More general versions of Conjecture B might also
be considered. For example, it may be true that L(m)G(m) = L(m)VG(,,,) for
every positive integer m.
It will also be shown that Conjecture B is equivalent to the following conjec-
ture.

Conjecture C. For any prime number p, the ZG(p)-module L(p) has no
non-zero module direct summand on which G(p) acts trivially.

In the context of Conjecture C the case p = 2 is particularly interesting. The
integral representation theory of G(2) shows that, for each n, (like any
ZG(2)-module which is free of finite rank as Z-module) is the direct sum of
ZG(2)-modules of Z-rank one (with one or other of the two possible G(2)-
actions) and regular 7GG(2)-modules (see Section 74 of [3]). Thus L(2) has a
basis Il with the property that SiU-Q is G(2)-invariant. But can one actually
find a basis with this degree of symmetry?

The author and R. Stohr have now shown that Conjecture A is true in the
case p = 2 (Fixed points of automorphisms of free Lie algebras, Arch. Math.
67 (1996), pp. 281-289). Thus Conjectures B and C are also true for p = 2.
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Problem D. Find a basis SZ of L(2) such that SZ U -St is G(2)-invariant.

An effective solution of this problem would yield a resolution of Conjecture C
(and hence Conjecture A) for p = 2 because Conjecture C holds in this case
if and only if no element of S2 is fixed by G(2).
The connection between Conjectures A, B and C is accomplished by means
of some results which will be stated now and proved in Section 2.

Proposition 1. Let G be a cyclic group generated by an element g of prime
order p and let U be a right ZG-module which is free of finite rank as 7G-
module. Let be a complex primitive p-th root of unity and let df(U) denote
the dimension over Q[t;] of the l;-eigenspace of g acting on Q[t;] ®Z U (with
Q[l;] ®z U regarded as a Q[t;]G-module). Then

dimF,, (U/pU)° = d (U) + dimFF (U°/Uv°).

Furthermore, dim(U°/Uv°) is equal to the largest number which is the Z-rank
of a module direct summand of U on which G acts trivially.

Proposition 2. Let m be a positive integer, m 3 2, and let 1= be a complex
primitive m-th root of unity. Let G(m) be the cyclic group of order m gen-
erated by an element g acting on L(Q[l;], m) as previously described. Then,
for every positive integer n, the t;-eigenspace of g acting on Ln(Q[l;], m) has
dimension f (m, n).

Now let G = G(p) and U = Ln(p), so that Q[l;]®z U ^_' Ln(Q[l;], p). By Propo-
sition 2, dc(U) = f (p, n). Also, in this case, U/pU Mn(p), so Proposition 1
gives the following result.

Corollary 3. Let p be a prime number, n a positive integer, and G = G(p).
Then

.f (p, n) + dim(Ln(p)°/Ln(p)v°)

Thus dim(Mn(p)°) = f (p, n) if and only if Ln(p)° = Ln(p)v°. This estab-
lishes the equivalence of Conjectures A and B. The equivalence of Conjectures
B and C follows from the last statement of Proposition 1.
I am very grateful to Dr L. G. Kovacs for introducing me to Short's con-
jecture and for discussing it with me on many occasions during my visit to
the Australian National University in 1993. I also gratefully acknowledge
the financial support for the visit which I received from the ANU. My fur-
ther thanks are due to Dr Kovacs for his comments on a preliminary draft
of this note which enabled me to simplify the presentation and proofs very
considerably. Finally I thank Dr Short for telling me of his own work on the
conjecture and for sending me a copy of [5].
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2. Proofs

Proof of Proposition 1 We write

.A(U) = dim(UG/UvG) - dim(U/pU)G

and aim to prove that )(U) = 0. We shall make use of the integral represen-
tation theory of G as described in Section 74 of [3].
Let R = and K = We regard K as a QG-module in which g acts
on K by multiplication by . Hence K is also a 7GG-module. By a fractional
ideal of K we mean a non-zero finitely generated R-submodule of K. Each
fractional ideal A of K is a ZG-submodule of K which is free of rank p - 1
as Z-module.
We regard the group ring ZG as the right regular ZG-module and write T
for a trivial ZG-module of rank 1, that is, a free Z-module of rank 1 with the
trivial action of G. Note that R regarded as a 7LG-module can be identified
with the augmentation ideal of ZG.
It is easy to verify that .X(R) = 0, ) (ZG) = 0 and A(T) = 0.
Let A be a fractional ideal of K regarded as 7GG-module. Since A has Z-rank
p - 1, it is easily verified that Q ®z A is isomorphic to K as QG-module.
But K is isomorphic to the augmentation ideal of QG. Hence d (A) = 1.
Clearly AG = {0}, so dim(AG/AvG) = 0. It is easy to verify that A/(1-A,
(1 - )A/(1-1=)2A, ... , (1- 6)1,'2A/(1- )P-'A are isomorphic to each other
as G-modules and

(A/(1 - )P-'A)G = (1 - )p-2A/(1 - )P-'A.

Now (1 - )P-' = pu where u is a unit of R (see (21.11) of [3]). Hence
'A = pA. But A/pA has order pP-'. Thus each factor (1-1=)iA/(1-

)z+'A has order p. Hence dim(A/pA)G = 1. (In fact, A/pA is isomorphic as
IFPG-module to the augmentation ideal of IFPG.) Therefore A(A) = 0.
Now let U be an arbitrary ZG-module which is free of finite rank as 7L-module.
Then, by (74.9) of [3], the ZG-module U ® R has a direct sum decomposition

U®R=U, ®U2ED ®U8

where, for each i, either Ut ZG, U; = R, Ut = T or Ut = A for some
fractional ideal A of K. (By considering U ® R instead of U we have ensured
that r ; n in the notation of [3].) Thus

A(U) + A(R) = A(U ®R) = A(U,) + + A(U,) = 0.

Hence \(U) = 0 as required.
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It remains to prove the last statement of Proposition 1. It is easily verified
that dim(RG/RvG) = 0, dim(ZGG/ZGvG) = 0, and dim(AG/AvG) = 0 for
each fractional ideal A. On the other hand dim(TG/TvG) = 1. Thus, with

U®R=U,ED UZED ...®U8,

as before, dim(UG/Uva) is the number of values of i such that Ui = T. As
shown in the proof of (74.3) of [3], the number of trivial modules in a direct
sum decomposition into indecomposables of any integral 7GG-module is an
invariant. The result follows.

Proof of Proposition 2 Let x be the character of the representation of G(m)
on m). By Brandt's character formula [1],

x(gi) = 1 E µ(d) (tr(g'd))n/d, i = 0,1, ... , m - 1,
n din

where tr(gid) denotes the trace of gid in the representation of G(m) on the
space L, (Q[t;], m) spanned by x1 i ... , xn,. Note that tr(gid) = m if Ml id and
tr(gid) = 0 otherwise.
By the inner product formula for characters, the -eigenspace of g acting on
Ln(Q[l;], m) has dimension

1 E E p(d)(tr(gid))n/d{i.

mn i=0 din

Suppose d is a divisor of n satisfying (d, m) = k > 1 and write m = km'.
Then

m-1 k-1

E (tr(g3d))n/dti = ['` mn/d ,lMn = 0.

If d is a divisor of n satisfying (d, m) = 1, then tr(gid) = 0 for i = 1, ... , m -1.
Thus

m-1
(tr(gad))n/d i

= mn/d.
i=0

Therefore the required dimension is

1 E p(d)n/d7
mn dIn

(d,-)=1

which is f (m, n).
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0. Introduction

The purpose of this article is to report on some recent developments in the
area of quotient categories of modules filtered by complexity. The quotient
category construction is certainly not new but its application to the represen-
tation theory of finite groups was only recently begun in joint work with Peter
Donovan and Wayne Wheeler. In [CDW] we considered the filtrations on the
category of modules given by the complexity invariant. It was shown that
the sets of morphisms in the quotients are localizations of cohomology. As a
direct consequence, the endomorphism ring of the trivial module decomposes
as a direct product of rings with the factors corresponding to the components
of the maximal ideal spectrum of the cohomology ring of the group. Specifi-
cally it was shown that the endomorphism ring has a set of orthogonal central
indempotents which correspond to the components of the variety.
At the same time, the trivial module is indecomposable in the quotient cate-
gory. All of this indicates that the quotient categories have no Krull-Schmidt
theorem, no uniqueness of decompositions of modules. This has been verified
in general for the trivial module and shown to hold for other modules as well
[C,CW].
The failure of Krull-Schmidt in quotients set the stage for several unusual
developments in a different direction. It seems that the uniqueness of decom-
positions can be recovered if we move to the category of infinitely generated
modules. Simply stated, the problems lies in the fact that the quotients are
triangulated but not abelian. The usual method of splitting indempotents

Partly supported by a grant from NSF
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in an abelian category involves looking at the kernel and cokernels of the
idempotents. However these constructions are not available in a triangulated
category, and the substitute construction of homotopy limits requires the tak-
ing of infinite direct sums. On the other hand many of the main techniques
from the module theory of modular group algebras are based on finiteness
conditions such as finite generation of modules and finite generation of coho-
mology. Indeed, the definition of the complexity of a module, which defines
the filtration on the module category, depends on the modules having finite
dimension over the base field.

A major focus of this survey is the recent results aimed at the development
of a theory of varieties and complexity for infinitely generated modules. We
will stick to the case in which G is a finite group and k is an algebraically
closed field of characteristic p > 0. The requirements on the coefficient ring
k are not entirely necessary, but occasional adjustments must be made in
hypotheses of theorems if the algebraic closure condition is relaxed. Many of
the older results on complexity and varieties of modules have been extended
to certain classes of infinite groups such as compact Lie Groups or groups of
finite virtual cohomological dimension. The same may be possible here. In
fact, our hope is that a module theory for infinitely generated modules may
aid in the development of a theory of modules for infinite groups, based on
their finite subgroups.

The paper is organized roughly as follows. Section 1 is mainly a survey
of background material on cohomology rings, varieties and complexity. We
consider only finitely generated modules except that we give some examples
to illustrate a few of the differences which should be expected when we pass to
the category of infinitely generated modules. Section 2 begins with a review of
the basic quotient category construction. An outline of the results of [CDW]
is presented with an emphasis on the structure of endomorphism rings and the
failure of the Krull-Schmidt theorem in the complexity quotient categories.
In Section 3 we introduce homotopy limits. It and other limit techniques play
a vital role in the analysis to come. We offer several equivalent definition of
the extended notion of complexity. Each has its own peculiar advantages, and
the proof of their equivalence is straight forward. More complicated is the
definition of the variety of an infinitely generated module. The initial attempt
at such a definition in [BCR1] has been refined and improved in later work.

In Section 4 we outline some of the latest work on indempotent modules and
decompositions of the categories [Ric], [B2], [BCR2]. The main idea is that
the category of all kG-modules has idempotent modules, that is, nonprojec-
tive modules M such that M ® M = M ® P where P is projective. For those
of us accustomed to working only with finitely generated modules the exis-
tence of indempotent modules was a surprise. A finitely generated module
M is idempotent if and only if M = k ® P with P projective.
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1. Finiteness Conditions

Suppose that G is a finite group and that k is an algebraically closed field of
characteristic p > 0. In this section we consider the category mod-kG of all
finitely generated kG-modules. The cohomology ring H* (G, k) plays a large
role in the general study of kG-modules. One of its most important features
is a theorem of Evens which asserts that the cohomology ring is finitely gen-
erated as a k-algebra. In particular, it is a noetherian ring. Moreover, if M
and N are in mod-kG then ExtkG(M, N) is a finitely generated module over
H* (G, k). To get a feeling for the structure we consider a few examples.
First suppose that G = (x) is a cyclic group of order p. Then the trivial
kG-module has a minimal projective resolution of the form

..._+ P324 P224 P,24 Po k-a0
where P, = kG for all i. Here

a
((x-1)a ifiisodd,

=(a) Sl (x - 1)p-lci if i is even.

Now HomkG(Pi, k) = k and hence H'(G, k) = H`(HomkG(P*, k)) has dimen-
sion 1 in every degree. Notice further that the resolution repeats every two
places and there is a surjective chain map of degree 2 (or degree 1 if p = 2).
The chain map represents an element (in H2(G, k) (in H'(G, k) if p = 2).
So we have that

H*(G k) k[(, 9J]/(r12) if p > 2,

1 k[K] if p = 2.

It is a technicality to check that the element rl E H' (G, k) for p > 2 squares
to zero.
Next suppose that we have an elementary abelian p-group G = (x1, ... , x")
(Z/p)". It can be seen that kG = k(xl) 0 k(x2) 0 ... 0 k(x"). As a result,
the trivial kG-module, k, has a projective resolution of the form

P. = Pi,. 0 P2,* ® ... ®P",*
E'®_..®

k

Here Pi,* -`-3 k is a k(xi)-projective resolution as in the previous paragraph.
The tensor product is over the coefficient ring k and the formula for the tensor
product of the complexes is the usual Kiinneth formula. Thus

HomkG(Pi, k) _ HomkG(k(xi), k)

k.
it+...+i=i
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and

H* (G, k) = H*((xl), k) ® ... ® k).

The cup products satisfy the anticommutativity rule Ou _ (-1)deg(0)deg(o)QB
So we have that

H*
(G

k) k[(1, ... , (n] 0 A(771, ..-,77n) if p i. 2,
k[(1, ... , (n] if p = 2.

Here A is the exterior algebra generated by the degree 1 elements
Notice that the ideal generated by 77i, ... , 77n is a nilpotent ideal and hence is
in the Jacobson radical of H* (G, k) and is contained in every maximal ideal.
Therefore we have that

H*(G,k)/RadH*(G,k) ^_ k[(1,...,(n], 1.1

a polynomial ring. If p = 2 the generators are in degree 1, while if p > 2,
they are in degree 2.
If G is not elementary abelian then the structure of the cohomology ring is
more complex. For example suppose that G = (x, y I x2 = y2 = (xy)4 = 1) is
a dihedral group of order 8, p = 2. Then the cohomology ring has the form

H* (G, k) = k[711, 712, (]/(7117)2), 1.2

with 771, 772 in degree one and (in degree 2. This is not a polynomial ring.
It has two minimal prime ideals generated by 77, and 7/2. The quotient
H* (G, k)/(771) = k[77z, (] is a polynomial ring, though the generators are not
both in the same degree. The group G has two maximal elementary abelian
2-subgroups: H1 = (x, (xy)2) and H2 = (y, (xy)2). In fact, with proper choice
of generators, the prime ideals (771) and (772) can be assumed to be the kernels
of the restriction homomorphisms to the subgroups H1 and H2, respectively.
The example illustrates the general situation. It is always the case that the
minimal prime ideals of H* (G, k) are the radicals of the kernels of the restric-
tions to the maximal elementary abelian p-subgroups of G. All of this was
contained in the fundamental work of Quillen.

(1.3) Quillen's Theorem [Q]. (see also [QV]). Let AG be the collection of
all elementary abelian p-subgroups of G. Then the kernel of the map

11 reso,E : H* (G, k) -+ 11 H* (E, k)
EEAG EEAG

is a nilpotent ideal. So kernel(flE resG,E) is in the Jacobson radical of H*(G, k)
and, most importantly, it is in every maximal ideal of H*(G, k).

Let VG(k) denote the maximal ideal spectrum of H*(G, k). Because H*(G, k)
is finitely generated as a k-algebra and almost commutative (if p > 2 then
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the elements of odd degree, which anticommute, square to zero and hence
are in every prime ideal of H* (G, k)), V,3 (k) is an affine variety. Also it is a
homogeneous variety since H*(G, k) is a graded ring. Indeed, it is often more
convenient to consider the projective variety VG(k) of lines in VG(k), since
almost all of the ideal which we consider are graded ideals.
Notice that if G = (Z/p)' is an elementary abelian group, then VG(k)
k". This is because k is algebraically closed and H*(G, k)/RadH*(G, k) is
a polynomial ring. Thus every maximal ideal m E VG(k) is the kernel of a
homorphism H*(G, k) -+ k given by a point evaluation, f -* f (a), for f in
the polynomial ring and a E k" a point corresponding to m. Then the result
of Quillen may be interpreted as saying that

VG(k) = U resG,E(VE(k)) 1.4

is a union of "folded" copies of kt where VE(k) = kt for t the p-rank of E.
From Evens' Theorem on finite generation it can be deduced that resc,E
VE(k) -+ VG(k) is always finite-to-one, hence the "folded copy of kt". But
more importantly we get that

dim VG(k) = r = p-rank(G). 1.5

The p-rank of G is the largest integer r such that G has an elementary abelian
subgroup E =' (Z/p)''.
All of the above has an extension to finitely generated modules. Suppose that
M is a finitely generated kG-module. Then H*(G, k) acts on

ExtkG(M, M) = H*(G, Homk(M, M)).

So let J(M) be the annihilator in H*(G, k) of ExtkG(M, M). Notice that
for any kG-module N, ExtkG(M, N) is a right ExtkG(M, M)-module and
ExtkG(N, M) is a left ExtkG(M, M)-module. An element in J(M) annihilates
the identity element of Extk0(M, M) and hence by associativity it annihi-
lates Extk0(M, N) and Extk0(N, M). That is, J(M) is the annihilator of all
cohomology of M in either variable. So we let

VG(M) = VG(J(M)) = MaxSpec(H*(G, k)/J(M)) C VG(k) 1.6

be the closed set of all maximal ideals in H*(G, k) which contain J(M).
VG(M) is an important invariant of the module M. When we write VG(k) we
mean the variety of the trivial module k, which is the same as the maximal
ideal spectrum of H* (G, k) = ExtkG(k, k). A few of the properties of the
variety, VG(-), are listed below.
(1.7.1) VG(M) _ {0} if and only if M is projective.
(1.7.2) VG(M) has dimension 1 if and only if M is periodic. By periodic we
mean that M has a projective resolution

...-4 PZ Po_+ M-_+ 0
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which repeats itself, i.e., for some n; P; = Ps+n and 8; = 8;+n for all i > 0.
VG(M) having dimension one means that VG(M) is a union of a finite number
of lines.
(1.7.3) In general, dim V(M) is the complexity of M, as defined by Alperin
(see Section 5.1 of [B1]). The complexity of M is the polynomial rate of
growth of the terms of a minimal projective resolution of M. That is, if

...-+PZ24 P1 P°-4 M-+ O

is a minimal projective resolution of M, then M has complexity t > 0 if and
only if t is the least nonnegative integer such that there exists a polynomial
f of degree t - 1 with Dim(Pn) < f (n) for n sufficiently large. Notice that
the zero polynomial, f (n) = 0, has degree -1 and hence the complexity of a
projective module is zero.
(1.7.4) VG(M) = VG(S2n(M)) = VG(M*). Here M* is the k-dual module M* _
Homk(M, k) with G-action given by (gA) (m) = A(g-lm) for A E M", M E M.
The modules of S2n(M) are defined by the minimal projective resolution of
M in (1.7) in that SZn(M) = an(Pn) = Kernel(8n_1) for n > 0. For n < 0, we
can give a minimal injective resolution

0 - M -* Q0 24 Q_1 24 Q_2 -Y ...

and the same definition applies (i.e. St-n(M) = 8_n(Qn)). It should be noted
that kG is a self-injective ring so that injective modules are projective and
vice versa. Consequently, 1I (1'(M)) = Sl'+i(M) modulo projectives for all
i, j. Here we must define 1l°(M) = Sl-1(SI(M)) to be the nonprojective part
of M so that M = cl°(M) ® P where P is a projective module, possibly zero.
(1.7.5) If 0 -+ M1 --p M2 -a M3 -* 0 is an exact sequence of finitely
generated kG-modules then VG(M;) C VG(M;) UVG(Mk) whenever {i, j, k} =
{1, 2, 3}. For any modules M1 and M2 we have that VG(M1®M2) = VG (M,) U

VG (M2) -

(1.7.6) VG(M 0 N) = VG(M) n VG(N) for any finitely generated kG-modules
M and N. Here 0 means ®k and the G-action on m 0 n is the diagonal one,
g(m ®n) = gm ®gn.
(1.7.7) VG(M) = UEEA(G)(resGE(VE(M))). This is the natural analog of
Quillen's Theorem, that was first proved by Alperin and Evens and, inde-
pendently, by Avrunin.
Many of the properties of the variety VG(-) can be verified easily once the
equivalence with the rank variety is established. The rank variety of a finitely
generated module M is a closed set of kn which can be computed directly
from the structure of M in the case that G (7G/p)n is an elementary abelian
p-group. Its definition is as follows.
Suppose that G = (x1, ... , xn) = (7G/p)n is an elementary abelian group of
order pn. For a E kn, a = (a1, ... ) an), let ua = 1 + E 1

a;(xl - 1). Notice
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that, because k has characteristic p, u« = 1, and ua is a unit of order p in
kG. The important thing is that kG as a k(ua)-module is projective. That is,
(ua) as a group of units in kG looks like any cyclic subgroup (x) where x E G.
Indeed, the group algbebra kG does not remember what the group elements
are. If ul,... , u are elements of the form ua for different a(1), ... , a(n) E k"
with a(1),. .. , a(n) linearly independent in k", then the inclusion of H kG
induces an isomorphism k(ul, ... , kG.
Now suppose that M is a finitely generated kG-module. It makes sense to
think about the restriction, M of M to a k(ua)-module. So we can
define the rank variety of M to be

VG(M) = {a E k I M J.(,) is not free } U {O}. 1.8

The connection with the cohomological variety is expressed by the fact that
when G = (x1, ... , is an elementary abelian p-group and M is a finitely
generated kG-module then VG(M) ^_' VI(M). This is not really an isomor-
phism but rather an isogency. The reason is that for p-odd, the map induced
by restriction

H* (G, k)/RadH*(G, k) -* H*((ua), k)/RadH*((ua), k)

takes a polynomial f = f ((1, ... , to the element f (ai, ... , an)(d (as in
(1.1)) where a = (a1, ... , E kn, ( E H2((ua), k) is a carefully chosen
generator, and d is the degree of the polynomial f . Hence the map on varieties
also involves a twist by the Frobenius automorphism when p > 2.
We end this section with a discussion of a couple of examples of infinitely
generated modules. The examples illustrate some of the constructions we have
just discussed and also give a hint of the difficulties encountered in moving to
the category of all kG-modules. In both examples we let G = (x, y) (Z/2)2
be a fours group, and k an algebraically closed field of characteristic 2. In
the examples we represent the modules by diagrams in which the vertices
represent elements of a k-basis for the module while the arrows represent
multiplications by the elements of the group algebra as in

multiplication by x-

b

C

multiplication by y-1

d

So the modules have the following diagrams.

Example A

a1 a2 as
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Example B

ao a, a2 a3

b, b2 b3 b4

That is, example A has a k-basis jai, bi I i > 0} and the action of the group
is given by

(x-1)ai=bi, (y-1)ai=bi+1,(x-1)bi=(y-1)bi=0.

Example B has one extra basis element, ao, with the same relations except
that (x - 1)ao = 0. Now if U = (u) is a group of order 2 then the free
module kU has a basis {1, u -1} such that (obviously) (u - 1) 1 = u -1 and
(u - 1)2 = 0. In general a kU-module N is free if and only if we have that
w E (u - 1)N for any w E N with (u - 1)w = 0. With this in mind consider
Example B. We claim that if a = (a,, a2) E k2 and if a2 # 0, then B (ua) is
a free module. The reason is that

(bi

(=(ua-1) 1-aoJ,bz=(uaa,+ a,
oJ,

a2 a2 a2

( )
1

a, a2
b3 = ua - 1 a2 + Za, + Za2 etc.

a2 a2 a2 /
and the set of U-fixed points of B is exactly the subspace spanned by the set
{b1i b2, b3, ...}. On the other hand if a2 = 0 then (ua - 1) ao = 0 and B is not
a free k(ua)-module. Hence if we compute a "rank variety" by the method of
(1.8) we get that VG(B) _ {(0, a2) I a2 E k} which is a closed set, a line, in
k2.

Now suppose we consider the module A restricted to (ua), a = (a,, a2) E k2.
Notice that if a2 = 0, a1 # 0, then A (ua) is free since bi = (ua - 1) (.jai).
However if a2 0 then it is impossible to write b1 as a linear combination of
a finite number of the elements (ua - 1)ai. So A is not free if a2 # 0.
Thus the "rank variety",

VG(A) = k2 \ {(a,, 0) 1 a, E k}

is an open set in the Zariski topology of k2.
For both of these modules, Q(M) = M. That is, both are periodic of period
1. For example, for the module A, we have a projective cover 0 : P -a A
with P being a free kG-module with kG-basis {ci}i,o and ¢(ci) = ai. Then
the kernel of 0 has basis

az=(y-1)ci-(x-1)ci+,, b'_(x-1)(y-1)ci, i>0.
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It is an easy exercise to check that {a2}, {b;} satisfy the same relations as the
chosen basis for A.
In Section 3, we will see that the module A has complexity 2 while module
B has complexity 1. This is still the dimension of the "rank variety", but it
seems to be no longer tied to the "rate of growth" of the projective resolutions
of the modules. The other thing which should be pointed out here is that
both A and B are idempotent modules in the sense that, for A,

A®k A^='A®P

for some projective module P. We will show later that in the category of
finitely generated modules there are no idempotents other than the trivial
module.

2. Quotient Categories

In this section we introduce the quotient category construction on categories
of kG-modules. We confine ouselves to the case of finitely generated mod-
ules, but our aim is to set the stage for the extension to infinitely generated
modules. We begin with the ordinary module category mod-kG of all finite
generated kG-modules and kG-module homomorphisms. We briefly survey
the definition of a triangulated category and the construction of quotient cat-
egories. Details can be found in the books by Happel [H] or Weibel [W].
The applications of the quotient categories to the study of modular group
representations can be found mostly in [CDW].
The stable category stmod-kG of finitely generated kG-modules modulo pro-
jectives has exactly the same objects as the category mod-kG. The morphisms
in stmod-kG are given by the formula

Homstmod-kc(M, N) = HomkQ(M, N)/PHomka(M, N)

where PHomkG(M, N) is the set of all homomorphisms a : M -* N such
that a factors through a projective kG-module, i.e., a = y o,3 where ,l3 :

M -* P, y : P -> N for some kG-homomorphisms fl, y, and some projective
module P. It might be important to recall that kG is a self-injective ring so
that a kG-module is injective if and only if it is projective. Hence factoring
through a projective is the same as factoring through an injective. There are
two properties of morphisms in the stable categories which we would like to
emphasize. The first is the fact that cohomology really takes place in the
stable category.

(2.1) For any kG-modules M, N and any n > 0, we have that

Homstmod-kc(ln(M)) N) = Extn (M, N).
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That is, suppose that (P., e) is a minimal projective resolution of M and that
(: S2n(M) -+ N is a homomorphism. Then we have a commutative diagram

Pn+ - P.
8

with p the surjection with kernel an+,(Pn+,) and i the inclusion. The fact
that ((p)an+, = 0 says that (p is a cocyle. It is an exercise to check that
( factors through a projective if and only if (p is a coboundary, i.e., if and
only if there exist 0 : P,,_1 -> N such that ( _ q5i. So the class of (in
Homstmod-ka(M, N) determines a unique element of Ext'G(M, N).

(2.2) Homstmod-kG(Qn(M), S2n(N)) = Homstmod-kc(M, N) for any n > 0.

That is, any homomorphism 9 from M to N lifts to a chain map from a
projective resolution of M to a projective resolution of N, thus inducing a
homomorphism S2n(9) from S2n(M) to 52n (N). The class of Qn(9), modulo
projectives, is uniquely determined by the class of 9. It is also true that the
isomorphisms in (2.1) and (2.2) can be used to define the cup product. That
is, if ry E Extt(L, M), (E Extn(M, N) then the cup product (7 is the class
of the composition (o S2n(y). Furthermore if we are willing to consider Tate
cohomology and injective as well as projective resolutions, then (2.1) and
(2.2) hold for all n.
For our purposes, one of the most important things about the stable category
is that it is triangulated. Every morphism is a part of a triangle of modules
and morphisms. We can illustrate the principle with the following exercise.
Suppose that a : M -4 N is any kG-homomorphism. Then we can find
projective modules P and Q and homomorphisms a : P -> N, T : M --+ Q
such that a'=(a,a):MED P-+ N is onto and a"=(a):M-*N®Qis
one-to-one. For example, P might be a projective cover of N or Q an injective
hull for M. So we have exact sequences

0--+U-24 M®P-24 N-+ O

and

O-+MN®Q-VSO
where U and V are the appropriate kernel and cokernel. It can be shown that
U =' Q (V) ® (proj), that is, U is S2(V) plus a projective direct summand. For
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convenience of language we actually think of this as V ^_' St-1(U) ® (proj). So
then we get a triangle in the stable category

U L3 M N 24 Q-1(U)

with vertices U, M and N, and edges 'y, a, ,6. Everytime we go around the
triangle we must apply the translation functor Q-1. The principle is that
exact sequences in the module category mod-kG correspond to triangles in
the stable category exactly as in the illustration.
The definition of a triangulated category is given by several axioms (See [H]
or [W]). Most of these express well known properties of modules and exact
sequences and hence there is not much point in going into the details here.
Rather we consider next the quotient category construction which is made
possible by the triangulation.
Suppose that M is a triangulated subcategory of stmod-kG, meaning that
if two of the objects in a triangle in stmod-kG are in M then so is the
third. The quotient category Q = stmod-kG/M has the same objects as
stmod-kG, but the sets of morphism in Q are obtained by inverting any
morphism in stmod-kG if the third object in the triangle of the morphisms
is in the subcategory M. Thus a morphism from M to N in Q might be
represented by a diagram

M U - N 2.3

where, s is invertible as above. We think of the morphism as being f o s-1.
It is actually an equivalence class since it is necessary to identity f o s-1 with
(f t) (st) -1 = f o t o t-1 o s-' whenever t: W-* U is a morphism in stmod-kG
such that the third object in the triangle of t is in M. The composition of
two morphisms

L -U-1 + M V-!-* N

is the splice got-1 o f o s-1. In the cases we consider, it is not difficult to show
using pullbacks that the product can be put in the form of (2.3) as above.
For any nonnegative integer c, let M. be the full subcategory of stmod-kG
of all finitely generated kG-modules with complexity at most c. By (1.5),
M, = stmod-kG if r is the p-rank of G. By (1.7.5) every .M, is a triangulated
subcategory of stmod-kG. As a result we have that the quotients .Me/Md
are defined.
Suppose that ( E Hn(G, k) is a nonzero cohomology element and that the
dimension of VC (() is less than r. The element ( is represented by a cocycle
(1: Sin (k) k (see (2.1)) which is obviously a surjection. Thus we have an
exact sequence

0--,' ,' k--,'0. 2.4

The important point is that:
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(2.5) VG(LJ = VG((), the set of all maximal ideals in VG(k) which contain C
(see [B1], or [E]).

Hence the assumptions on ( guarantee that LS has complexity less than r and
hence the morphism (is invertible in the quotient category M,/M,_,. This
leads us to the following observation

(2.6) Every object of M,/.M,_1 is periodic.

In the triangulated category M,/M,_1 the periodicity is measured by the
translation functor 52-1, or by its inverse Q. So suppose that M is a kG-
module of complexity c. Then VG(M) C VG(k) has dimension c. It is not
hard to see that for some n > 0 there exists an element ( E H" (G, k) such
that VG(() fl VG(M) has dimension c - 1. So we have that

VG(L( 0 M) = VG(Lc) n VG(M) = VG(() n VG(M)

has dimension c - 1 (by (1.7.6) and (2.5)) and hence Ls 0 M E M,_1. So
suppose we tensor the sequence in (2.4) with the module M. We get an exact
sequence

0-+LC ®M_ n(k)®MS2"'k®M--4 0.

Of course k 0 M = M, but also Q '(k) 0 M =' Sl' (M) ® (proj). This last is a
consequence of the fact that tensoring with a projective module always yields
a projective module. Hence we have that, in the quotient category, the class
of (® IdM : St"(M) -+ M is invertible and is an isomorphism. This proves
(2.6).
The situation we encounter in the proof of (2.6) really does represent the
general situation. For suppose that U and M are in M, and that s : U - M
is invertible modulo Mc_1. Let W E M, be the third object in the triangle
of the morpshim s. It is always possible to find an element ( E H" (G, k),
some n, such that VG(() fl VG(M) has dimension c - 1 and S annihilates the
cohomology of W (implying that VG(W) C VG(()). Then it can be shown
that

(2.7) There exists t : SZ"(M) -4 U such that st : SZ"(M) -+ M is equivalent
to (® IdM in stmod-kG and is invertible modulo Mc_1.

Thus we have that any morphism

is equal in .Mc/Mc_1 to one of the form

M+_!L S2"(M)ft N

So by (2.1) we have that
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(2.8) In Q,, HomQ, (M, N) = [ExtkG(M, N) S-']° where S = {(E H" (G, k)
( homogeneous, dim VG (() n VG (M) < c} and [ ]° indicates the elements of
degree zero.

Now consider the case c = r and M = N = k, the trivial kG-module. We re-
call that VG(k) = Ui=1 V where V = and the elements E, run
through a set of representatives of conjugacy classes of maximal elementary
abelian p-subgroups of G ( see (1.4)). The closed sets V are the components
of the variety and hence no V is contained in the union of the others. Appeal-
ing to some results of commutative algebra we notice that there are elements
(1i ... , (f in Hn(G, k), for some n, such that
(1) VG((i) n V < V,
(2) VG((i) n V; = V, for j 0 i,
(3) (i(j = 0 in HIn(G, k) if i 54 j.

Notice in (3) that VG((1() = VG(k) and hence we are assured that (i(j is
nilpotent. Now let

S = S1 + - - + Sn E Hn(G, k).

Then the elements e, = (i (-' are orthogonal idempotents in HomQ,. (k, k).
It follows that

HomQ,(k,k)=R1®.. ®R8 2.9

where each Ri is a local ring corresponding to a conjugacy class Ei of elemen-
tary abelian p-subgroups of maximal rank r in G.
Hence we have that the endomorphism ring of the trivial module k in Q,
decomposes. On the other hand it can be shown [CDW], using subadditive
functions on the category, that the trivial module is indecomposable in Q,..
This violates the usual intuition of people studying module categories over
artinian rings. The indication is that there is no Krull-Schmidt Theorem
in Q,., i.e., no uniqueness of decompositions of objects as direct sums of
indecomposable objects. The validity of these indications is confirmed in the
following example. This example is not the same as the one in [CDW]. That
is, even if the ultimate decomposition is the same, the example of the triangle
(exact sequence) is chosen to indicate a more general decomposition which is
discussed further in Section 4.
Suppose that G = (x, y I x2 = y2 = (xy)4 = 1) is a dihedral group of order 8.
Of course, the coefficient field k has characteristic 2. Notice that

kG = k(A, B)/(A2, B2, (AB)2 - (BA)2)

where A = 1 + x, B = 1 + y and k(A, B) indicates the polynomial ring in
noncommuting variables A and B. The diagrams which we draw for kG-
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module are explained in detail in [Rig]. The free module kG has diagram

A/ \B

Bl jA

A B

B\ /A

where again each vertex represents a k-basis element and an edge (arrow)
represents multiplication by A or by B as indicated. Now G has two maximal
elementary abelian 2-subgroups: H1 = (x, (xy)2) and H2 = (y, (xy)2). The
induced modules from the two subgroups also have diagrams

M1=ky1=IA, M2=kH2=jB

From the diagram for kG we see that S2(k) has a diagram (obtained by re-
moving the top vertex and its adjoining edges)

m1 m2

B A

Al B

B\ /A

That is S2(k) is generated as a kG submodule of kG by m1 = x + 1 and
m2 = y + 1. Then we have an exact sequence

0-- L--+ Q(k)(DQ(k) -4M1ED M2-+0
given in diagram form as

0 --- L -

m1 m2

U V

IB®
IA

--0
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where 0(m1) = u, 6(m2) = v, B(n1) = Bu, 0(n2) = Av. The kernel L is
generated by Bml + n1 and Amt + n2 and has diagram

identify

Amt + n2 Bm1 + ni Amt + n2

BW WA
B\ 1A

(the two ends of the diagram are the same.) It is not difficult to check that
L is a periodic module. Moreover as in (2.6) we can show that 1(k) k in
the quotient category Q2 = M2/M1. Because L E .M1 we have that inQ2,

k®k=kHGE)OG

This is an honest example of the failure of Krull-Schmidt, since the three
modules in the equation can all be shown to be indecomposable in Q2.
Finally we should mention that the morphisms in quotients of greater differ-
ence Me/Md, c = d > 2, can also be characterized [CW2], though the answer
is far more complicated. The problem is to find objects to take the place of
the modules S2n(M) in (2.7). The objects which we create are paramerterized
by (c- d)-tuples ( G ,--- , (,_d) of homogeneous elements of H' (G, k) such that
nVG((z) has dimension r - (c - d). The homomorphism group, HomkG(U, k),
for such an object U is given by a spectral sequence whose E1-page is a trun-
cated Koszul complex determined by the elements S1, ... , (,_d. It appears
that the E2-page is a sort of Cech cohomology of a certain sheaf. However,
the elements of HomkG(U, k) only represent elements of HomMC/Md(k, k). To
characterize we must take a limit of the spectral sequences.

3. Extensions to infinitely generated modules

In the previous section we discussed the fact that the quotient categories
.M,/M, do not in general have uniqueness of decompositions of objects.
As one example we showed that the endomorphism ring of the trivial module
in Q,. = .Mr/.M,._1 decomposed as a direct sum of rings with the summands
corresponding to the components of maximal dimension r in the variety VG(k).
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In particular, we stated that there were idempotents e, E HomQr (k, k) cor-
responding to the components of the variety. The usual proof of the Krull-
Schmidt Theorem, which expresses the unique decomposition of modules into
indecomposables, proceeds by finding an idempotent in the endomorphism
ring of the module and showing that the module is the direct sum of the
kernel and the image of that idempotent. That is, the idempotent splits
the module. The problem with the quotient category Qr is that it is not
an abelian category. So even if we have idempotents in the endomorphism
ring, there are no kernels or images. The category Qr is triangulated but not
abelian.
In this section we discuss some of the constructions which can be made in a
triangulated category to imitate the properties of an abelian category. Most
of the new results of this section are contained in the manuscript [BCR1]. The
first is the technique of using idempotents to split modules. The method is
called a homotopy limit and is well known to the experts in stable homotopy
theory [BN]. The only problem with the construction is that it requires the
taking of infinite direct sums of modules and hence a passage to the category
of all kG-modules, even the infinitely generated ones. In order to put the
method to use we must extended our concepts of complexity and varieties to
the category of all kG-modules.
Suppose that we have an idempotent e = f Is in HomMC,Md (M, M) for some
kG-module M. Let 1-e = (s - f )/s = g/s. Then f +g = s and f g = g f = 0.
For convenience of notation we assume here that s = 1. We will state later
the adjustments which must be made ifs ; 1. The question here is how do we
split the idempotent e in the triangulated category. The trick is to produce
a triangle whose third object is the "image" or the "kernel" of e. This is the
homotopy limit and we get it in the following fashion. Let M' = ®-1M be a
direct sum of copies of M and consider the map Y'1 given diagrammatically
by

M

M

M

That is,

V1 (m1, M2.... ) = (f (m1) + 9(mz), f(Mm) + 9(m3), ... ).
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The reader may wish to notice here, that if this were an ordinary category of
modules with f +g = 1, then V1 would be a surjection. But in the triangulated
category (assuming we can allow the infinite direct sum) we have a triangle
of the morphism 'Yl,

M1-fM'-M'-*Q-1(M1),
which defines a new object M1.
Now notice that, if f +g = s # 1, but s is invertible in the quotient category,
then we need to let M1 be the third object in the triangle of the morphism
iii where ii,' is given by ti = 4)1 IV)"

M'4' MM
for ,b as before and (s, s, s, ...).
Next suppose that 02 is the morphism constructed in the same way but with
f and g interchanged. Then we have a triangle

M2-+ M'-*M'-fcr1(M2).
Now take the direct sum of the two maps 01 and ''2 By rearrangment of the
sums, we have a diagram

M®M

M®M

M®M

x

x

x

I I and Y =
g 0/ 0\

I

I.where X =
f

. The next step is to rearrange the
\0 g 0 f

module again by applying the map A = (f g to the sum M®M. Notice

/9f\ -g f
that I f -g I is the inverse of A. It is a routine check to see that

( 9 1)(0 g)\g .f /-\0 0/
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and

C -g f/\ fi .f / l g .f /-\ fi 1/
We conclude that the third object in the triangle of the morphism

M' ED
M,11® 2M'®M'

is isomorphic to M. But then M = M, ® M2 because of the uniqueness of
the third object in the triangle of a specified morphism.
So we see, that in a triangulated category, it is possible to split idempotents
provided we can take infinite direct sum. However the definitions of com-
plexity and varieties for modules are based on the finiteness conditions of
section 1. Hence we wish to try to extend these notions to the category of all
kG-modules. For this purpose let StMod-kG denote the stable cateogry of all
kG-modules. We need to define subcategories M1 , of StMod-kG, of all kG-
modules of "complexity" c. Before attempting such a thing let us emphasize
the properties which we wish M to have. Specifically, we would hope to be
able to get the following.

(3.2 i) M1 should be a full triangulated subcateogry of StMod-kG.

(3.2.ii) The collection of finitely generated module in a1 should be precisely
the objects in Mc. That is,1 fl stmod-kG = M.

(3.2.iii) 1 should be closed under infinite direct sums and summand.
Finally, and most importantly, we would like to be assured that nothing is
lost in the passage to the infinitely generated category. That is, we wish that

(3.2.iv) The natural functors .M,/.Md - u1 /old should be fully faithful for
all d < c.

With these conditions in mind we offer several candidates for the subcate-
gories defining complexity.

(3.3.a) Let Min denote the smallest triangulated subcategory of StMod-kG
containing M, and also closed under the taking of direct summands and
countable direct sums. Notice that the intersection of two triangulated sub-
categories, which are closed under summands and countable direct sums, also
has all of these properties. So there is a smallest subcategory with these
properties. The categories Min clearly satisfy conditions (i) - (iii) of (3.2).
But condition (iv) seems to be difficult to show directly. Rather we prove it
as a consequence of the Min's being subcategories of the other candidates.

(3.3.b) Let U, be the full subcategory of StMod-kG consisting of all modules
M satisfying the condition
(*) if y : X -+ M with X E mod-kG, then y factors as the composition
X -24 Y - M, y=(rl, withY EM,.
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This is the condition which we need to achieve condition (iv) of (3.2). For
suppose that we have a morphism

Mf3 USN
in U lUd with M, N, E M, and s invertible. Let W be the third object in the
triangle of the morphism s. Then we have a triangle

W-+ U -L SZ-1(W),

where 52-1(W) E Ud. Now by (*), 'y factors as M -!+ Y 11 '(W) for
Y E Md. So we get a diagram of triangles

Y
sS2-1(W)

Tn 1

W-U----- S --- -M- Q-1(W)

It Jr

IU' U0

where U' is the third object in the triangle of y. Hence U' E M, and r = st
is invertible modulo Md. The existence of the map t is a conseqence of the
axioms of a triangulated category (( rl r = 0). However it is probably just
as easy to understand it by pulling the diagram back to a diagram of exact
sequences in mod-kG.
The existence of t, which is invertible modulo Md says that our original
morphism f Is is equivalent to a morphism,

M--Lt+ U' N,

which takes place entirely in M, Hence the mapping

HomM./Md (M, N) -> Homu,lud (M, N)

is surjective. A similar argument shows that it is also injective. Conditions
(i) and (ii) of (3.2) can also be verified without much difficulty. Condition
(iii) is a little more difficult.

(3.3.c) Let E. be the full subcategory of stmod-kG consisting of all modules
M with the property
(**) Suppose that S C M is a finite set of elements. Then there exists a
projective kG-module P and a submodule Y E M® P such that S x {0} E Y
andYCM,
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The condition defining E, is the one which we usually think is most easily
recognized. However we shall see later in the section that there are some
problems with the recognition. It is easy to verify that the subcategories E,
satisfy conditions (i) - (iii) of (3.2).

The last candidate for a definition of complexity is a variation on (3.3.c). The
limit construction is very useful in creating examples and plays an extremely
important role in the development of the idempotent modules of the next
section.

(3.3.d) Let C, be the full subcategory of StMod-kG consisting of all modules
which are filtered colimits of modules in M,.

To put all of this together we prove the following

(3.4) Theorem [BCRI]. For 0 < c < r,

Min,

The proof is reasonably straight-forward. Once the equality of 14, C, and £,
is verified then the inclusion of Min, is obvious. The inclusion of U, into
C, requires all of the technicalities of the definition of filtered colimits. An
object M in C, must be in E, because any finite subset of M is in the image
of one of the modules in the system giving the colimit. Finally an object M
from E,, is in U, because the image of any y : X -* M with X E mod-kG is
generated by the finite set which is the image of the generators of X.
We should note that if we limit ourselves to countably generated modules
then Min, coincides with the other subcategories. In any case we have that
U,. = StMod-kG, if r is the p-rank of G, by (1.5) and the definition. The
complexity of a module M E StMod-kG is defined to be c if M E U, but
M 1,_1. The Alperin-Evens Theorem extends to the catgegory of all
kG-modules. That is, the complexity of a module is the maximum of the
complexities of the restrictions to the elementary abelian p-subgroups.
Using the arguments from the first part of this section we can split idem-
potents in U,/U _1. To get a Krull-Schmidt Theorem we need only that
idempotents can be split and also that endomorphism rings be artinian rings.
To this end, we define M,,,_1 to be the smallest subcategory of U,/U,_1 which
contains the quotient M,/M,_1 and is closed under the taking of direct sum-
mands. The fact that endomorphims rings of objects in M,,,_1 are artinian
was proved in [CW1].

(3.5) Theorem (Krull-Schmidt). Up to order and isomorphism every
object in M,,,_1 is uniquely a direct sum of a finite number of indecomposble
objects.

The effort to find a definition for the variety of a module is still in progress.
Clearly some modification must be made to the definition in section 1. For
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an infinitely generated module M the cohomology ring Extk0(M, M) is not
necessarily finitely generated as an H*(G, k)-module. So it is possible to have
a situation in which, for a particular element C in H*(G, k), each element of
ExtkG(M, M) is annihilated by some power of (, but no power of ( annihilates
every element. This actually happens for the example (B) of section 1. In
addition, a close look at the example (A) of section 1 indicates that variety
of a module might be an open rather than a closed set. One attempt at
solving this problem is proposed in [BCR1]. It defines the variety, V1(M), of
a module M to be the collection of all V0(J) C V0(k) where J runs through
the set of all annihilators of all finitely generated H*(G, k)-submodules of
Extk0(X, M) for X a finitely generated kG-modules. Thus V0(M) is a col-
lection of closed subsets of VG(k). This definition works well relative to the
problem encountered in example (B). In particular, the maximum of the di-
mensions of the closed sets in V0(M) is the complexity of M, as just defined.
In the case of (B) that complexity is 1. In addition if M is finitely gener-
ated then V0(M) has a unique maximal element which is Va(M) and which
contains every other closed set in the collection V0(M). However, the exam-
ple does not work so well for example (A). In this case VC(k) is one of the
closed sets in the collection. Among the other things, it can be seen from
this that the new variety VG() does not satisfy the tensor product theorem
(1.6.6). Other variations on this theme are explored in [BCR2]. Some of the
problems, particularly the lack of a tensor product theorem are resolved with
appropriate modificiations in the definition.

It can be shown that example (A) has complexity 2 in the new definition. For
one thing the map 0 : k --+ A, given by 0(1) = b,, does not factor through
any finitely generated module of complexity one. So A ¢ U1. Similarly we
can see that A V E,, because the set {b,} is not in any finitely generated
submodule of A or of AT (proj) such that the submodule has complexity 1.

There are several other interesting examples in the appendix of [BCR1]. Some
of them show that the condition in (**) of (3.3.c), which allows the addition of
a projective module P, can not be eliminated. That is, in general, there exist
infinitely generated modules of complexity c which have no finitely generated
submodules of complexity c. The point is that the maps which present a
module as a direct limit or filtered colimit of modules of complexity c, need
not be injective.

Another example from [BCR1] illustrates the decomposition of the trivial
module which we obtain by extending the category to include all modules.
At the end of Section 2 we showed how the direct sum of two copies of the
trivial module is isomorphic to the direct sum of the two modules induced
from the trivial modules on the maximal elementary abelian 2-subgroups. In
this case the p-rank of G is r = 2, and k E M2. All Hl (G, k) has two elements
'q,, 772 with rl, 772 = 0. Here rl; is represented by a cocycle rl; : 0(k) -* k with
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ri;(m;) = S=; in the notation of (2.10). It is not difficult to show that 77, +r72
is an isomorphism in Q2 = .M2/,M1. That is, the kernel of ril + 172' has
complexity 1. So let 71 = 77, + 172. Then in Q2, el = 771/77, e2 = 172/77 are
orthogonal idempotents. It remains to put these elements into the homotopy
limit scheme of the first part of the section, and to write the trivial module
k as the direct sum of two infinitely generated modules. The answer is that
k =' U1 ® U2, and this decomposition is represented in diagrams as

a2 a,
A/ \B Al

B\ /A B\ ./A

® jA JB jA ...

B\ /A B \ /A

where U1 is generated by a1, a2.... and U2 is generated by b1, b2, .... Then we
have homomorphism 0 : U1 ® U2 -+ k given by

0(a,) = 1 = 0(b1) and 0(a;) = 0 = 0(b;) for i > 1.

The kernel of 0 is obtained diagrammatically by indentifying a1 and b1. To
verify that 0 is an isomorphism in Q2 it is only necessary to check that its
kernel is in U1 and hence has complexity 1.

4. Decomposition, Idempotents and rank varieties

We saw in the last section, that in a triangulated category, such as .M,/.M,_,,
a decomposition which is only indicated by the endomorphism ring of an
object is actually realized when the category is extended to permit infinite
direct sums. Results obtained in the last few months have demonstrated the
principle several times over. The most striking fact to be discovered is that the
stable category StMod-kG of all kG-modules has idempotent objects, that is
non-projective modules M such that M (9 M =' M ® P where P is projective.
In fact, the modules A and B at the end of Section 1 are idempotent modules.
The idempotent modules, separate the category into orthogonal subcategories
and tensoring with an idempotent module is a localizing functor in the sense
of homotopy theory.
To set some background, we begin with another decomposition of the quotient
category Mr/.M,._1. For notation let El, . . . , Et be a complete set of represen-
tatives of the conjugacy classes of maximal elementary abelian p-subgroups
of G. Let V = C VG(k), and recall that V1,...,V are the
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components of the variety VG(k) (see (1.4)). For each i, let Di = DG(Ei) be
the "diagonalizer" of Ei. That is, the normalizer NG(Ei) acts by 1Fp-linear
transformations on Ei, which is an Fr-vector space, and the diagonalizer is
the set of elements of NG(Ei) which act on Ei by scalar matrices. Thus an
element x E NG(Ei) is in Di if and only if there exists a E Z/p = lFp such
that xyx-1 = ya for all y E Ei.
The following theorem is stated in full detail. However this discussion will re-
quire only the more easily understood implications for the quotient categories.
These will be explained later.

(4.1) Theorem [C]. Suppose that m = LCM{ING(Ei) : Dil }, and for each
i = 1, ... , t, let m, = m/I NG(Ei) : Dil. Then for some n > 0 and all e > 0,
there is a projective module P (depending on n, e) and an exact sequence

0 --, L (SZnt(k))m e P+ J(kDi)'ni ____+ 0
i=1

such that VG(L) fl vi : V for all i = 1, ... , t.

Notice that the Theorem takes place entirely within the category mod-kG of
finitely generated kG-modules. The statement that VG(L) fl V # V implies,
in particular, that dim VG(L) < r = dim VG(k) where r is the p-rank of G.
Hence L E Mr-1. By (2.6), k is periodic and for some value of e we have that
52nc(k) = k in the quotient category Qr = Mr/Mr-i Composing this with
the isomorphism zG proves the following.

(4.2) Corollary. In Qr, k"` = ±((kbG)mi where m, mi are given as in the
i=1

Theorem.

Frobenius reciprocity for modules over group algebras says that if H C G
is a subgroup then M ® k,T,G = (M (D kH)t' = M,10 where MH means the
restriction of M to a kH-module. So in Qr, for any module M,

t
Mm - E(M?G)'"i

Di
i=1

Hence one way of expressing the corollary is to say that, except for a "com-
plexity factor" (embodied in L) the module theory of kG is controlled at
the level of the diagonalizers of the maximal elementary abelian p-subgroups.
Even if the "complexity factor" is not well understood, it is not difficult to
derive several consequences of the idea. For example it explains why the co-
homology ring Extkc(kbG, kb°) must have irreducible modules of dimension
m/mi = NG(Ei) : Di (see [C]). In a more complicated piece, it was used to
prove restrictions on the varieties of modules M in the principal kG-block
with H*(G, M) = {0} (see [CR]).
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Several months ago, Dave Benson [B2] observed that the corollary implies a
decomposition of the quotient category itself. Remember that Mr,r_i is the
closure under taking direct summands of Mr/,M,_, in the quotient
In Mr,r_1 we can split idempotents and the trivial module has a decomposi-
tion into a direct sum of indecomposable modules corresponding to the idem-
potents in HomMr,r_, (k, k). In turn the idempotents correspond to the com-
ponents V of maximal dimension in VG (k). For notation here let El, . . . , E,
be the representatives of the conjugacy classes of maximal elementary abilian
p-subgroups of rank r. So if s < i < t then the rank of Ei, is less than r, V
has dimension less than r and kDG has complexity less than r.
The identity element in HomMr r_, (k, k) is a sum of s orthogonal primitive
idempotents corresponding to the components V1, ... , V, Then k decomposes
in J `r,r_i C as

k ' = ir1 ® . . . ®7re (4.3)

where each iri is indecomposable and VG(iri) = V. The fact that k ® k ^_' k
implies, without much difficulty, that iri ® 1ri ^_' 7ri modulo IL,-,. The key
to the argument is that for i 54 j, 7r; 0 7r; E ll,_,. Then, given the two
decompositions, it can be shown that kD = (iri)m/mi modulo llr_l. More
than that, the category decomposes

lur/ur-1 = L U ... U V
as a direction sum of full triangulated subcategories 1Vi _ (Lfr/l(_1)0iri. The
category Vi is equivalent to the corresponding category for the normalizer of
Ei. For finitely generated quotients, this fact could only be proved with heavy
restrictions [CW2].
Before proceeding further we might notice that the stable category stmod-kG
of finitely generated kG-modules has no idempotent modules other than the
identity. Hence we are really seeing an unusual new phenomenon in the
infinitely generated quotients.

(4.4) Proposition. Suppose that M is a finitely generated nonprojective
kG-module and that M 0 M = M ® P for some projective module P. Then
M = k ® Q for some projective module Q.

The proof is based on a lemma which can be found in [AC]. For the conve-
nience of the reader we reproduce both the Lemma and a sketch of its proof
here. We write UIV to mean that U is a direct summand of V.

(4.5) Lemma. Suppose that M is a finitely generated indecomposable kG-
module. If p[Dimk(M) then kIM®M*. IfpIDimkM then M®MIM®M*0
M.

Proof of Lemma Let {mil be a basis for M and let {.i} C M* be a dual
basis. So )i(mp) = bid. Let 0 : M 0 M* -+ k and ry : k -+ M 0 M* be given
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by 9(m ®A) = \(m) and y(a) = a i m, 0 )i. The reader should check that
0 and y are homomorphisms and that 0 o y = (DimkM) Idk. If DimkM is
not zero in k, then (1/DimkM)6 is a one-sided inverse for y. So suppose that
pIDimkM. Let 01=1®0,02=0®1:M®M*®M-pMand let yl=1®y,
y2 = y 0 1 : M -+ M ® M* ® M. Of course, the above notation requires
that we make the switch of M ® M* with M* ® M when needed. We need
to check that 0,yl = 0 = 02-(2 while 02y1 = IdM = 01y2i then the composition

(B2

M®M1'''"1mom* ®M M®M

is the identity on M ® M. This proves the lemma.

Proof of Proposition The first thing to notice is that if M is an idempotent
module, then so is M*, as M* 0 M* = (M ® M)*, and so also is M ® M*.
We have two cases.
Assume first that p f DimM. Then kIM 0 M* and M = (M ® k) I (M 0 M ®
M*) ^_' M ®M* ® (pro j) . Hence if M 5t k ® (pro j) then k ®M I M ®M ®M*
and M* ® kI M ® M O M* 0 M* = M ® M* ® ( proj). Clearly this leads to
a contradiction.
Simlarly, ifplDimM, then M®MIM®M®M* and (M®M*®M®M*)I(M®
M 0 M* 0 M*) = M 0 M* ® (proj). This also is impossible.

Most recently Jeremy Rickard showed us that the stable category StMod-kG
of all kG-module has idempotent objects corresponding to closed subsets of
the variety VG(k), [R]. The construction is again by a limit process which
looks something like the one we use to split idempotents. This time we take
a colimit of triangles in StMod-kG or of exact sequences in Mod-kG. We
illustrate the technique for the special case that the closed set V = VG(() is
the subvariety corresponding to the ideal generated by a single homogeneous
element ( E H* (G, k).
Suppose that ( E H"(G, k). As we saw in Section 1, (is represented by a
cocycle ( : Q' (k) -4 k. We may translate by the translation functor Q-^ and
add a projective P to k so that we have a surjection k ® P1 -* Q-" (k)
which also represents C. So we have an exact sequence

0-+52-"(L()->k®P1-+cr (k) -+ 0 4.6

From the viewpoint of the stable category, it is the translation by Q_ of the
triangle

Ls -3 Qn (k) -> k -3 Q-' (Ls)

(see (2.4)) which was considered earlier. Of course, there also exists a sequence
such as (4.6) for any power of (, and with careful choice of representatives we
get a commutative diagram of the form
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0 ,cn(LS) - k ®(proj) S SZ-n(k) - 0

0 _ S22n(LS2) - k ® (proj) s-> 1l-2n(k) -p- 0

I 3 n(k) , 00 _ Q3n(L(3) - k ® (proj) , S2 3
S

where the maps in the middle column are all congruent to the identity on k
modulo homomorphisms which factor projectives. Actually the maps in the
middle column are only isomorphisms modulo projective modules. But that
is sufficient. Now take the colimit of the diagram of the corresponding system
of triangles. The colimit is an exact sequence whose corresponding triangle
is

-*L(V)-14 k--*F(V)--+ 4.8

in StMod-kG.
Suppose that M is a finitely generated kG-module such that VG(M) C V =
VG((). Then for all m sufficiently large (n` annihilates ExtkG(M, M). If we
take the tensor product of M with everything in the diagram (4.7), then any
sufficient long composition of map in the right hand column factors through
a projective and hence is zero in the stable category. That is, for any t

("` ®1 : S2_tn(k) ® M -a 52(-t-m)n(k) ® M

is a translate of the cup product ('n U IdM E Extnm(M, M) and is zero. The
conclusion is that the colimit of the system in the right hand of column of (4.7)
tensored with M is a projective module. Hence L(V)®M = k®M®(proj)
M ®(proj).
The next observation is that for any m, the module Lcm satisfies the property
that VG(L(m) C V. So from the standpoint of the stable category the system
in the left hand column of diagram (4.7) is unchanged when tensored with
L(V). Thus it follows that

L(V) ® L(V) = L(V) ® (proj).

It is not difficult to see also that the "rank variety" of L(V), if computed by
the method of (1.8), is exactly V. As a result the "rank variety" of F(V)
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is precisely VG(k) \ V, which is an open set. In fact, the two examples at
the end of Section 1 have this property. That is, A = F(V1) and B ^_' L(V2)
where V, _ {(a, 0)Ia E k} and V2 = {(0, 0) 10 E k}.
Several other observations are immediate. First notice that the remarks of
the last paragraph can be interpreted as saying that the map

L(V) ®L(V) '- L(V) ® k

for /.t as in (4.8) is a stable isomorphism. Thus L(V) 0 F(V) must be a
projective module. Tensoring the triangle (4.8) with F(V), we get that

F(V) ®k -124 F(V) ®F(V)

is also a stable isomorphism and so F(V) is an idempotent module. Similar
constructions can be made for any closed set. If V = V ((1, ... , (t) is the
variety of the ideal generated by then L(V) = L(V ((,)) ®
L(V((t)) and F(V) is the third object in the triangle of the map L(V) -+ k.
Also F(V) can be created by taking a limit of the modules U((',, ... ,)
defined in [CW2].
One of the surprises is that some of the ideas can be extended to infinite
collections of closed sets. For example, suppose that V, = {V }iEI is the
collection of all closed subvarieties V E VG(k) of dimension c, indexed by
some set I. With some care it is possible to define a tensor product F(V) _
® F(V) and a triangle
iEI

L(V) -" > k " r F(VV)

as before. Again L(V) is an idempotent module and tensoring L(V) is the
identity functor on Uc. On the other hand, tensoring with F(V) is a localizing
functor and gives us an embedding of the quotient category Ur/U as F(V) 0
StMod-kG in StMod-kG = U.
In the case that c = 1, F(V) is an infinitely generated nonprojective module
whose rank variety, as defined in (1.8), contains only the zero point. This is
one of many indications that the definition of the rank variety needs some
alteration in order to be useful in the category of infinitely generated modules.
So we define a new rank variety as follows (see [BCR2]).
(4.9) Let K be the algebraic closure of a large transcendental extension of k
(transcendence degree n2 is certainly enough). Let G = (x,) ... , xn) be an
elementary abelian p-group. Then the rank variety of a kG-module M is the
set

VI(M) _ {O} U {a E K" I (K ® M)(,) is not free }

where, for a = (a,, ... , an) E Kn, uo. = 1 + E ai(xi - 1) as before.
In other words, the "new" rank variety of M is the same as the old rank
variety of the extension K Ok M of M to KG-module. The point of the
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extension is that every point of K" is a generic point for a subvariety of k".
If two points a, ,Q E K" are generic for the same subvariety of k" then for
any kG-module M, either both a and 6 are in VI(M) or neither of them is
in VV(M). Consequently the rank variety of a module M can be thought of
as a subset of the prime ideal spectrum of H'(G, k). Of course, VG (M) is not
really a variety but just a subset of K. It is not clear, at this point, what
subsets of K" can occur as rank varieties of indecomposable kG-modules.
When actually doing the calculation of VI (M) for a specific module M, it is
easiest to think in terms of homogeneous varieties. We know that a E kn,
a ,- 0, is in VI (M) if and only if every point on the line through a is also in
VI(M). So consider the projective variety VG(M) C KP". Now notice that
any line a E KP" contains at least one point which is generic for a uniquely
defined, homogeneous subvariety of k". So a is generic for some uniquely
defined subvariety of the projective space KP". Hence we can see that the
variety of L(VV) consists of precisely those points a such that a is generic for
a subvariety of dimension at most c - 1 in kPn-1. The rank variety of F(VV)
is K" \ VV(L(VV)). In particular, the rank variety of F(VV) is not zero so
long as c < r.

(4.10) Theorem [BCR2]. Suppose that G is an elementary abelian p-
group.
(a) (Dade's Lemma) Suppose that M is a kG-module and that VI(M) = 0.

Then M is a projective module.
(b) (Tensor Product Theorem) Suppose that M and N are kG-modules.

Then
VG(M ® N) = V I (M) n Vc(N).

It is also possible to define cohomological varieties as in the case of finitely
generated module. One such definition is as follows. Let VG(M) be the collec-
tion of all closed homogeneous subsets V of VV(k) such that the complexity
of M ® E(V) is the same as the dimension of V. For elementary abelian
groups we have that VG(M) is equivalent to VG(M) in the sense that a closed
subvariety V E k" is in VV(M) if and only any corresponding generic point
for V is in VG(M).
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Protrees and A-trees
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School of Mathematical Sciences, Queen Mary and Westfield College, University of London,

Mile End Road, London El 4NS.

1. Introduction
The idea of a protree is due to M.J. Dunwoody, and they first appear in
[7], although the name protree was not used until later, in [8]. Two major
advances in combinatorial group theory in the late 1960's were the Bass-Serre
theory (see [10]), and Stallings' work on ends of groups (there is an account
of this work in [11], and from a different perspective in [5]; a more recent
and more general account can be found in [6]). Together, these imply that a
finitely generated group with more than one end acts on a tree with finite edge
stabilisers. This raised the problem of giving a direct construction of the tree,
and it was in solving this problem that Dunwoody introduced protrees. Under
certain circumstances (the finite interval condition, which will be considered
in §3 below), a protree gives rise to an ordinary simplicial tree.
We show here that any protree arises in a simple way from a A-tree, for
some suitable ordered abelian group A. For information on A-trees, see [1].
This is part of a programme, started in [4], to demonstrate that any notion
of generalised tree which occurs in the literature is a manifestation of some
suitable A-tree.
A protree is, by definition, a partially ordered set (E, <) together with an
order-reversing involution E -* E, e -4 e*, such that, for all e, f E E, exactly
one of e > f, e> f, e* >f, e* > f*, e = f , e = f * holds. Note that this
implies e* e for all e E E.
For example, if E is the set of oriented edges of a tree, and e* is the oppositely
oriented edge to e, then we can obtain a protree by defining e > f to mean
that e points towards f (i.e. there is a reduced path in the tree starting with
e and ending with f), as illustrated in the following picture.
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In view of this example, we shall occasionally refer to elements of a protree
as edges. It is well-known that a tree determines a 7L-tree (see, for example
[4; Lemma 4]), whose points are the vertices of the tree, and whose metric
is the path metric of the tree. The oriented edges of the tree are in one-
to-one correspondence with the ordered pairs of vertices at distance 1 apart
(associate to each edge e the ordered pair consisting of the initial and terminal
vertices of e).
This can be generalised as follows. Let A be an ordered abelian group with
a least positive element, denoted by 1, and let (X, d) be a A-tree. We define
E(X) = {(u, v) E X x X I d(u, v) = 1}. We put (u, v)* = (v, u), and if
e = (u, v), f = (x, y), then we define e > f to mean [u, y] = [u, v, x, y] (this
notation is explained in (2.10) of [1], and will be used extensively). This
defines a protree (E(X), <), a fact we shall prove shortly. (We are, of course,
using the usual conventions for partial orders, so e < f means f > e or
f = e).
We shall often suppress the partial ordering and write E instead of (E, <),
and use < to denote any partial orderings under consideration. A mapping
0 : E -4 E' of protrees will be called an embedding if it is one-to-one, e < f
implies O(e) < 0(f) and ¢(e*) = ¢(e)*, for all e, f E E, and an isomorphism
is a bijective embedding. A subprotree of a protree E' is a subset E of E'
such that e E E implies e* E E; it then follows that E is a protree by
restriction, and the inclusion map E y E' is an embedding. The notions of
automorphism and of group action on a protree are defined in the obvious
way. If E is a G-protree (i.e. G is a group acting as automorphisms of E),
then E is said to be G-finite if there are only finitely many G-orbits of edges.
We shall show that any protree can be embedded in a protree (E(X), <)
for some A-tree (X, d) and ordered abelian group A having a least positive
element. However, before doing so, we shall consider the vertices, in the
generalised sense defined in [8], for a protree of the form (E(X), <). The
result is what one would expect intuitively, that vertices arise from points of
X, open ends of X and open cuts in X (these terms are defined in [1]).
Before proving that (E(X), <) is a protree, we need a remark, which will also
be useful later.

Remark. If (s, t) E E(X) and r E X, then either t E [s, r], so [s, r] = [s, t, r],
or s E [t, r], so [t, r] = [t, s, r]. For if t ¢ [s, r], then [s, r] fl [s, t] = {s} (since
Is, t] = IS, t}), so [t, r] = [t, s, r], using one of the axioms for a A-tree.

Lemma 1. Let (X, d) be a A-tree, where A has a least positive element.
Then (E(X), <), with the involution e -4 e* defined above, is a protree.

Proof Let e = (u, v), f = (x, y) and g = (s, t) be elements of E(X), and
suppose e > f > g. Then [u, y] = [u, v, x, y] and [x, t] = [x, y, s, t]. Since
x 0 y, it follows from the Piecewise Geodesic Proposition ([1; 2.14(c)]) that
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[u, t] = [u, v, x, y, s, t] = [u, v, s, t], hence e > g.
If e > e then [u, v] = [u, v, u, v], which implies d(u, u) = 2d(u, v) > 0, a
contradiction. It follows that < is a partial order.
Clearly e** = e, and e > f implies f * > e*. It remains to show that exactly
one of e > f , e > f *, e* > f , e* > f *, e = f , e = f* holds. We first show
that at least one of these possibilities occurs. By the remark preceding the
lemma,

[u, y] = [u, v, y] or [v, y] = [v, u, y]

and [u, y] = [u, x, y] or [u, x] = [u, y, x]

giving four cases, which we consider in turn.

Case 1. [u, y] = [u, v, y] and [u, y] = [u, x, y]. Then either [u, y] = [u, x, v, y]
and v x, or [u, y] = [u, v, x, y]. In the first case, e = f (since d(u, v) _
d(x, y) = 1), and in the second, e > f .

Case 2. [u, y] = [u, v, y] and [u, x] = [u, y, x]. Then [u, x] = [u, v, y, x], so
e > f*.
Case 3. [v, y] = [v, u, y] and [u, y] = [u, x, y]. Then [v, y] = [v, u, x, y], that is,
e* > f.
Case 4. [v, y] _ [v, u, y] and [u, x] = [u, y, x]. By the remark preceding
the lemma, either [v, x] = [v, y, x], in which case [v, x] = [v, u, y, x], that is,
e* > f *, or [v, y] = [v, x, y]. Then either [v, y] _ [v, u, x, y], which implies
x = y, a contradiction, or [v, y] = [v, x, u, y] with u # x, which implies u = y
(since [u, x] = [u, y, x]) and v = x (since d(u, v) = 1). Thus e = f *.

We have to show that exactly one of the six possibilities occurs. We have
already noted that e > e is never true, and clearly e* 54 e. Also, e > e*
is never true. For otherwise, [u, u] = [u, v, v, u], which implies v = u, a
contradiction. Thus it suffices to show that, if e > f , then none of e > f *,
e* > f , e* > f * holds, for we can replace e by e* or f by f *, or both in the
argument. Assume, then, that

[u, y] = [u, v, x, y] (*)

If e* > f then [v, y] = [v, u, x, y], so d(v, y) = d(v, u) + d(u, y), and from (*),
d(u, y) = d(v, y) +d(v, u). This gives d(u, v) = 0, a contradiction. Similarly if
e* > f *, so [v, x] = [v, u, y, x], we obtain from (*) the contradiction d(u, v) _
0. If e > f *, then we obtain from (*) the contradiction d(x, y) = 0. This
completes the proof of the lemma.

Note that, if G is a group acting as isometries on a A-tree (X, d), where
A has a least positive element, then G preserves segments, so G acts as
automorphisms of the protree (E(X), <).
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2

Let (E, <) be a protree. An orientation of E is a subset 0 of E such that 0
contains exactly one element of the pair {e, e'}, for every e E E. The set VE
of generalised vertices of E is the set of all orientations 0 of E satisfying

e E 0 and f > e implies f E 0.

These definitions are given in [8], although we are using the notation of [9].
In the case that E is the set of edges of a tree, each vertex gives rise to an
element of VE, namely, the orientation consisting of all edges which point
towards the vertex. Similarly, every end of the tree gives rise to an element
of VE. As noted in [9], these are the only elements of VE in this case. We
shall show that there is a similar classification of elements of VE in the case
that E = E(X), where (X, d) is a A-tree and A has a least positive element,
denoted by 1. In general, there are three kinds of elements in VE(X), the
third kind corresponding to open cuts of X, which do not occur in the case
A = Z. We begin by describing the three types of elements of VE in detail.

(1) Let w E X. Define a subset 0,,, of E(X) by: e E 0,,, [u, w] = [u, v, w],
where e = (u, v). This is an orientation by the remark preceding Lemma 1.
Suppose e = (u, v), e E 0,,,, f = (x, y) E E(X) and f > e. Then [x, v] =
[x, y, u, v] and [u, w] _ [u, v, w]. Since u # v, it follows from [1; 2.14(c)] that
[x, w] = [x, y, u, v, w] _ [x, y, w], hence f E O. Thus 0. EVE.

(2) Let e be an end of X (see [1; 2.23]). Define 0e by e E 0, v E
[u, E), where e = (u, v) (the notation [u, e) is explained in (2.24) (a) and the
paragraph preceding it in [1]). It follows easily from (2.22)(c) and the remarks
in (2.21) of [1] that [u, E) fl [v, e) = [w, E) for some w E X, and [u, w] fl [v, w] =
{w}. By the axioms for a A-tree, [u, v] = [u, w, v], and since d(u, v) = 1,
either w = u or w = v. Hence 0E is an orientation of E(X).
Suppose e = (u, v), e E 0E, f = (x, y) E E(X) and f > e. Then [x, v] _
[x, y, u, v] and v E [u, E). Since u # v, it follows easily that [x, v] C [x, e), so
y E [x, e), hence f E 0E and we have shown that 0E EVE.

(3) Let (X,, X2) be an open cut of X; this means that X1, X2 are disjoint
subtrees of X whose union is X, and neither of them is a closed subtree
of X (see (2.25) and (2.27) in [1]). Let el, 62 be the open ends of X1, X2
respectively which meet at the cut. By (2), 0E; is an orientation of X= for
i = 1, 2. We claim that OXl,X2 = OEl U 012 is in VE. To see this, we make
two remarks.

Remark 1. There is no edge e = (u, v) with u E X1, v E X2.
For suppose e is such an edge. Then, as noted in (2.27) of [1], it follows from
[1; 2.26] that [u, v] = [u, e) U [v, e2), a disjoint union. Since el is an open
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end of X,, there exists w E [u, e1) with w # u. then w # v since v E X2, and
[u, v] = [u, w, v], which implies d(u, v) > 1, a contradiction.
It follows from Remark 1 that 0x,,x2 is an orientation of E(X).

Remark 2. If e = (u, v) E OX,,X2) f = (x, y) E E(X), f > e and e E E(X,),
then f E E(Xi) (for i = 1, 2).
For without loss of generality assume i = 1. Suppose f E E(X2), so f > e.
Then again by [1; 2.27], [x, v] = [x, y, u, v] = [v, E1) U [x, e2). Since u E X1,
u E IV, 61), which means e* E Ox,,x2, contradicting the fact that OX,,X2 is an
orientation of E(X).
It follows from Remark 2 that OX,,X2 (E VE.

Note that, if E is an end of X which is not open, then there exists w E X such
that, for u E X, [u, s) = [u, w], so Of = 0.. (In the case that X is a Z-tree
arising from an ordinary tree T, it is the open ends of X which correspond
to the ends of T in the usual sense, and the closed ends of X correspond to
terminal vertices (leaves) of T). We shall show that, if we confine attention
to open ends in (2) above, then we have defined three different kinds of
elements of VE. In order to do so, we first recall the definition of directions
in an arbitrary protree (E, <) ([8]). For 0 E VE and e E 0, put (0, e] =
If E 0 1 f< e}. For e, f E 0, define e- f to mean that there exists g E 0
such that g < e and g < f (equivalently, (0, e] fl (0, f] 0). It is shown in
[8] that this is an equivalence relation on 0, and elements of 0/ - are called
directions at 0.

Lemma 2. Let (X, d) be a A-tree, where A has a least positive element
denoted by 1. Then
(1) If E is an open end of X, there is exactly one direction at 0E in the

protree E(X).
(2) If (X1, X2) is an open cut of X, then there are exactly two directions at

OX, X2 in E(X).

Proof (1) Let e = (u, v), f = (x, y) be elements of 0E. Then as we have
noted previously, [v, E) n [y, e) = [w, e) for some w E X X. Since e is an
open end, there exists w' E [w, e) such that d(w, w') = 1. It follows easily
that [u, w'] = [u, v, w, w'] and [x, w'] = [x, y, w, w'], hence e > (w, w') and
f > (w, w'). Also, (w, w') E 0E, hence e - f.

(2) Let E,, 62 be the ends of X1, X2 respectively which meet at the cut. By
(1), 0, defines a unique direction in X;, for i = 1, 2. Also, if e - f with
respect to 0E,, then e - f with respect to OX,,X2. Thus, it suffices to show
that if e E 0, and f E 0E21 then e -A f . Suppose on the contrary that there
exists g E OX,,X2 such that g < e and g < f. If g E 0E1, then f E E(X1) by
Remark (2) above, a contradiction, and if g E OE2 then e E E(X2) by Remark
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(2), which is again a contradiction. These are the only possibilities for g, so
this proves the lemma.

It is also easy to show that, if w E X, then the number of directions at 0,,, in
E(X) is equal to indx(w), as defined in §1 of [2], but we shall not need this.
In particular, (1) of Lemma 2 is true for any end of X, open or not.

Lemma 3. Let E = E(X), where (X, d) is a A-tree and A has a least
positive element, denoted by 1. An element of VE cannot be of more than
one of the following forms.
(1) O,,, for some w E X
(2) OE for some open end e of X
(3) Ox1,X2 for some open cut (X1,X2) of X.

Proof If E is an open end of X, then Oe 0 O., for any w E X. For suppose
OE = Ou . Since e is an open end, there exists w' E [w, E) with d(w, w') = 1.
Then if e = (w, w'), e E OE but e* E 0,,,, a contradiction.
If (X,, X2) is an open cut, then OX1,X2 Ov, for any w E X. For suppose
OX1,X2 = 0,,,. We assume without loss of generality that w E X1. Then
0,,, n E(X1) = 0,,, and 0,,, fl E(X1) is the element of VE(X1) determined by
w, so this contradicts what has just been proved (with X1 in place of X).
Finally, 010 OX1,X2 by Lemma 2.

We shall show that any element of VE(X) is of one of the three forms in
Lemma 3. Before doing so, we pause to show that the endpoints of edges
in E(X) are as expected, given the example of a simplicial tree. Recall that
([8]), if E is any protree and e E E, the endpoint to is the element of VE(X)
defined by f c to f > e or f > e*. (The endpoint re is defined by
Te = to*).

Lemma 4. Let E = E(X), where (X,d) is a A-tree and A has a least
positive element, denoted by 1. Let e = (u, v) E E. Then to = 0,,.

Proof Let f = (x, y) E E(X). Then by definition,

f E to ([x, v] = [x, y, u, v] or [x, u] = [x, y, v, u] or (x = v and y = u))

and

f <eor f <e*
t ([u, y] = [u, v, x, y] or [v, y] = [v, u, x, y] or (y = v and x = u)).

It follows that f E to if and only if y E [x, u], that is, f E 0., as required.

Given an element 0 E VE(X), the next lemma constructs a linear subtree
Lo,e of X, where e E 0, which will play a role in showing that 0 is of one of
the forms described in Lemma 3. In the case that 0 = 0E for some open end
E, the subtree Lo,e will be a ray in X representing e. The terminology in the
statement of the lemma is explained in (2.18) and (2.21) of [1].
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Lemma 5. Let E = E(X), where (X, d) is a A-tree and A has a least
positive element, denoted by 1. Let 0 E VE, and let e = (x, y) E O. Put

Lo,e = {u E X I 3v E X such that (v, u) E (0, e]}.

Then Lo,e is a linear subtree of X with y as an endpoint. Further, if (u, v) E
E, v E Lo,e and (u, v) < e, then (u, v) E O.

Proof We abbreviate Lo,e to L. Take u, v E L, and suppose w E [u, v].
We show that w E L. We can assume that u 54 w # v, so u # v. Choose
u', v' E X such that (u', u) E (0, e] and (v', v) E (0, e]. Since (0, e] is
linearly ordered (see [8]) and u # v, we can assume without loss of generality
that (u', u) < (v', v), that is, [v', u] = [v', v, u', u]. Since d(u, u') = 1 and
w $ u, [v', u] = [v', v, w, u', u], and since w # v, there exists w' E X such that
d(w, w') = 1 and [v', u] = [v', v, w', w, u', u]. Then (w', w) < (v', v), hence
(w', w) < e, and (u', u) < (w', w), so (w', w) E O. Thus (w', w) E (O, e], and
w E L. We have shown that L is a subtree of X. (It is non-empty since
y E L).
Next, we show that L is linear. Let u, v, w E L, pairwise distinct. By
[1; 2.20], we need to show they are collinear. Choose u', V', W' E X such
that (u', u) E (O, e], (v', v) E (O, e] and (w', w) E (O, e]. again since (O, e]
is linearly ordered, we can assume without loss of generality that (u', U) <
(v', v) < (w', w). Thus [w', v] = [w', w, v', v] and [v', u] = [v', v, u', u]. Since
v' # v, it follows from [1; 2.14] that [w', u] = [w', w, v', v, u', u]. Hence V E
[w, u], and u, v, w are collinear, as required.
Now we need to show that y is an endpoint of L. Suppose [u, v] = [u, y, v],
where u, v E L. Take u', v' E X such that (u', u) E (0, e] and (v', v) E
(O, e]. Then (u', u) < (x, y), so either u = y or [x, u] = [x, y, u', u]. Also,
(v', v) < (x, y), so either v = y or [x, v] _ [x, y, v', v]. Thus, if u 54 y and
v # y, [u, v] = [u, y, v] = [u, u', y, v', v], which implies (u, u') > (v', v). By the
axioms for a protree, this contradicts the fact that (0, e] is linearly ordered.
Hence either u = y or v = y, and y is an endpoint of L.
Finally, suppose (u, v) E E, v E L and (u, v) < (x, y). Take w E X such
that (w, v) E (O, e]. If (u, v) = (x, y) then (u, v) E 0 as required, so assume
(u, v) < (x, y), that is, [x, v] = [x, y, u, v]. Then v # y since u # v, so
(w, v) < (x, y), i.e. [x, v] = [x, y, w, v]. Since there is a unique point in [x, v]
at distance 1 from v, it follows that u = w, hence (u, v) = (w, v) E O.

Before proceeding, the following simple observation is worth recording.

Remark. If, in Lemma 5, w E Lo,e, then [w, x] = [w, y, x]. In particular,
x ¢ L0,e.

Lemma 6. Under the hypotheses of Lemma 5, suppose Lo,e is an X-ray
from y, so Lo,e = [y, s) for some end s of X. Then 0 = O.
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Proof Let f = (u, v) E E(X). We have to show that v E [u, e) if and only
if f E O. Since both 0 and OE are orientations, it suffices to show that
v E [u, e) = f E O. We again write L for Lo,e
Now, as has been noted previously, [u, e) n L = [u, e) n [y, e) _ [w, e) for some
w E X. Also, it is easy to see that [u, E) = [u, w] U [w, E), [y, e) = [y, w] U [w, e)
and [u, w] n L = {w} _ [u, w] n [y, w] (see [1; 2.21]). Assume V E [u, e).

Case (1). Suppose u w. Then d(u, w) > 1, so [u, w] = [u, v, w]. Also,
L ; [y, w], otherwise L C [y, u] = [y, w] U [w, u] (using one of the axioms
for a A-tree), contradicting the assumption that L is an X-ray. Since L is
linear, there exists w' E L such that [y, w'] = [y, w, w'] and d(w, w') = 1.
By the remark preceding the lemma, [x, w'] _ [x, y, w'] = [x, y, w, W']. Hence
(x, y) > (w, w'), so (w, w') E 0 by Lemma 5.
If w' E [u, w] then w' E [u, w] n L = {w}, i.e. w = w', a contradiction.
By the remark preceding Lemma 1, w E [u, w']. Hence [u, w'] = [u, w, w'] _
[u, v, w, w'], which implies (u, v) > (w, w'), so (u, v) E O since 0 EVE.

Case (2). Suppose u = w. Then u E L, and [u, e) C_ L, so v E L. By the
remark preceding the lemma, [x, v] = [x, y, v]. Also, [y, e) = [y, u] U [u, e), so
[y, v] = [y, u, v] (because [y, E) is linear, has y as an endpoint and v E [u, e)).
Thus [x, v] = [x, y, u, v], hence (x, y) > (u, v), and (u, v) E 0 by Lemma 5.
This completes the proof.

The case where Lo,e is not an X-ray is dealt with in the next two lemmas.

Lemma 7. Under the hypotheses of Lemma 5, choose z E X \ Lo,e. Define

X1 = {u E X I [u, z] n Lo,e 0 0} and X2 = {u E X I [u, z] n L0,e = 0}.

Then (X1i X2) is a cut in X.

Proof Clearly X1 n X2 = 0 and X, U X2 = X, so we have to show that X1,
X2 are subtrees of X. As usual we write L for Lo,e
Suppose u, v E X1. Then we can find w, w' E L such that [v, z] = [v, w, z] and
[u, z] = [u, w', z]. By [1; 2.14(a)], [v, u] S [v, w] U [w, w'] U [w', u]. If p E [v, w],
then [v, z] = [v, p, w, z], so w E [p, z], hence p E X1. Thus [v, w] C X1, and
similarly [w', u] C X1. Also, [w, w'] C_ L C X1 since L is a subtree of X, hence
[v, u] C X1, showing X1 is a subtree of X (it is non-empty since L C X1).
Suppose u, v E X2. Let w E [u, v] and suppose that w ¢ X2, so [w, z] _
[w,1, z] for some l E L. By [1; 2.14(a)], either w E [u, z] or w E [v, z].
If w E [u, z], then [u, z] = [u, w, z] = [u, w, 1, z], which implies u ¢ X2, a
contradiction. If w E [v, z], then [v, z] = [v, w, z] = [v, W,1, z], so v ¢ X2,
which is also a contradiction. This shows that X2 is a subtree of X (it is
non-empty since z E X2).

Before stating the next lemma, we need another remark.
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Remark. Suppose (X, d) is a A-tree, where A has a least positive element
denoted by 1. Let (X1, X2) be a cut in X. Then either X1, X2 are both closed
subtrees of X, or neither is closed, i.e. the cut is an open cut.

For suppose X1 is closed, and choose x E X1, y E X2. Then [x, y] f1X1 = [x, z]
for some z E X1. Since z # y, there exists w E X such that d(w, z) = 1 and
[x, y] = [x, z, w, y]. Then [w, y] fl X1 = 0 and [x, y] = [x, z] U [w, y], hence
X2 fl [x, y] = [w, y], and it follows easily that X2 is a closed subtree of X.

Lemma 8. Under the hypotheses of Lemma 5, suppose Lo,e is not an X-ray
from y, and let L' be a linear subtree from y such that Lo,e C L'. Choose
z E L' \ L0,e. Let (X1, X2) be the cut defined in Lemma 7. Then
(1) If X1 (so X2) is a closed subtree of X, then 0 = 0 for some v E X
(2) If (X1, X2) is an open cut, then 0 = OXI,X2-

Proof It follows easily from the hypotheses that L C_ [y, z], where L means
L0,e. Also, [y, z] flXi = Lf1X1 = L. For clearly L C X1, and if u E [y, z] fXi,
then [u, z] = [u, 1, z] for some l E L, hence [y, z] = [y, u, 1, z], so u E [y, 1] C L.

Case (1). Suppose X1, X2 are both closed subtrees of X. Then L = [y, z] fl
X1 = [y, v] for some v E X. Also, X2 fl [y, z] = [u, z] for some u E X. It
follows that d(u, v) = 1 (see (2.26) in [1]).
We claim that, if d(v, w) = 1, where w E X, then (w, v) E O. Suppose first
that w V L. Then since [y, v] = L, it follows from the remark preceding
Lemma 1 that [y, w] = [y, v, w]. Again by the remark preceding Lemma
1, either [x, w] = [x, y, v, w], or [y, w] = [y, x, v, w], or x = w. If [x, w] =
[x, y, v, w], then (x, y) > (v, w), and it follows that (v, w) 0 0 (otherwise
w E L by definition of L), hence (w, v) E 0. If [y, w] = [y, x, v, w] then
x E [y, v] C_ L, contradicting the remark preceding Lemma 6. If x = w, then
[v, x] = [v, y, x] by the remark preceding Lemma 6, and d(v, x) = 1, so v = y.
Therefore (w, v) = (x, y) E O.
Now suppose w E L = [y, v]. By the remark preceding Lemma 6, [x, v] _
[x, y, v] = [x, y, w, v], which implies e = (x, y) > (w, v), hence (w, v) E 0 by
Lemma 5. This establishes the claim.
We finish the proof of Case (1) by showing that 0 = 0,,. As in the proof
of Lemma 6, it suffices to show that (p, q) E E(X) and q E [p, v] implies
(p, q) E 0. If q = v this follows from the claim we have just proved. If q # v,
then we can find to E X such that d(v, w) = 1 and [p, v] = [p, q, to, v]. By
the claim, (w, v) E 0, and since (p, q) > (w, v), we obtain (p, q) E 0 since
0 E VE(X).

Case (2). Suppose the cut is an open cut, and let El, 62 be the open ends of
X1 and X2 respectively which meet at the cut. By the observations at the
beginning of the proof and (2.26), (2.27) in [1], L = [y, z] fl Xi = [y, ei), and
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[y, z] = [y, e1) U [z, e2). Note that, since y E L, y E X1i hence x E X1 by
Remark 1 preceding Lemma 2.
We show that 0 n E(X2) = O. As in the proof of Lemma 6, it suffices
to show that (u, v) E E(X2) and v e [u, e2) implies (u, v) E 0. Suppose
(u, v) E E(X2) and v E [u, e2). Again by [1; 2.27], [u, y] = [y, e1) U (u, e2).
It follows that v E [u, y], and that x 0 [u, y]. (For x ¢ [y, e,) = L by the
remark preceding Lemma 6, and x 0 [u, e2) since [u, e2) C X2 and x E X,).
By the remark preceding Lemma 1, [u, x] = [u, y, x] = [u, v, y, x]. It follows
that (x, y) > (v, u), hence (v, u) 0 0, otherwise u E L, which is impossible.
Therefore (u, v) E 0, as required.
It remains to show that O n E(X,) = O. Since e E X1 and L is the X-ray
[y, e,) of X,, it suffices by Lemma 6 to show that L = L1, where

L, = {u E X1 1 3v E X1 such that (v, u) E (O n E(X1), e] }.

Clearly L1 C L. Suppose u E L, so u E X1 and there exists v E X such that
(v, u) E (0, e]. It follows from Remark 1 preceding Lemma 2 that v E X1.
Thus (v, u) E (O n E(X1), e], so u E L1. This finishes the proof.

We can now state a theorem classifying the elements of VE(X).

Theorem 1. Let E = E(X), where (X, d) is a A-tree and A has a least
positive element. Then if 0 E VE, exactly one of the following is true.
(1) 0 = 0,,, for some w E X
(2) 0 = 0£ for some open end e of X
(3) 0 = 0x,,x2 for some open cut (X1, X2) of X.

Proof This follows from Lemma 3, Lemma 6 and Lemma 8, except in the
case that X consists of a single point, say X = {w}, in which case E(X) = 0.
But then 0,,, = 0, which is the unique element of VE in this case.

3

A protree (E, <) (indeed, any partially ordered set) is said to satisfy the
finite interval condition if, for all e, f E E, the set {g E E I e < g < f } is
finite. If (E, <) is a G-protree, where G is a group, we say (E, <) is a nice
G-protree if every G-finite subprotree has the finite interval condition. With
these definitions, we can state the main result, which is slightly more general
than suggested in the introduction, in that a nice group action on a protree
can be extended to an action by isometries on a A-tree in which the protree
embeds. The method of proof uses ultraproducts, and is similar to that used
in [4].



84 I.M. Chiswell

Theorem 2. Suppose, G is a group and (E, <) is a nice G-protree. Then
there exist an ordered abelian group A with a least positive element, a A-
tree (X, d) on which G acts as isometries and a G-equivariant embedding of
protrees 0: E -+ E(X).

Proof Let S be the set of all G-finite subprotrees of (E, <). For F E S, there
is by [7; Theorem 2.1] (or [6; Ch. 2, Cor. 1.10]) a G-tree TF realising (F, <),
in that F is the set of oriented edges of TF, and (F, <) is obtained from TF in
the manner described in §1. Further, as noted in §1, TF determines a Z-tree,
say (XF, dF), and G acts as isometries on XF. Thus there is an isomorphism
of protrees F -+ E(XF), e H (sF(e), tF(e)), where sF(e) is the initial vertex,
and tF(e) the terminal vertex of e in TF. We choose, for each F E S, an
element VF E XF.
For F E S, define aF = {F' E S I F C F'}. Then if F, F' E S, aF fl aF1 _D
aFuF, and F U F' E S. Also, aF # 0 since F E aF. It follows from Cor. 3.5,
Ch. 1 in [3] that there is an ultrafilter D in P(S), the Boolean algebra of all
subsets of S, such that aF E D for all F E S. Form the ultraproducts

X = FIFES XF/D, *G = FIFES G/D = G'5I D, A = FIFES Z/D = 7Gs/D

and let d = rIFES dF/D. If (XF)FES is an element of the cartesian product
FIFES XF, its equivalence class in FIFES XF/D will be denoted by (XF)FES,
and similar notation will be used for the elements of the other ultraproducts.
Thus d is given by: d((xF)FES, (yF)FEs) = (dF(XF, yF))FES
By Lemma 5 of [4], (X, d) is a A-tree, with *G acting as isometries, hence
G acts as isometries via the canonical embedding of groups G y 'G, g H
(YF)FES, where gF = g for all F E S. Explicitly, g(xF)FES = (gXF)FES for
g E G and XF E XF. Further, it is well-known (and easy to prove) that the
canonical embedding of Z into A embeds 7G as a minimal non-trivial convex
subgroup of A, so the integer 1 is the least positive element of A. Thus we can
form the protree (E(X), <), and E(X) is a "G-protree, hence a G-protree.
For e E E, define s(e) = (uF(e))FES, where

uF(e) sF(e) if e E F

VF otherwise

and define t(e) = (wF(e))FES, where

(tF(e) if e E F
wF(e)

Sl VF otherwise.

Thus s(e), t(e) E X, and in fact d(s(e),t(e)) = 1. For let Fo = GeUGe*, so
FOES and for all FEaFO, eEF, hence dF(uF(e), wF(e)) = dF(sF(e), tF(e)) = 1,
since dF is the path metric on TF. Since aFOED, it follows that d(s(e), t(e)) =
1. Therefore there is a mapping 0: E --- E(X) given by q5(e) = (s(e), t(e)).
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Now for e E E, we have just used the fact that, for all F E aFO, uF(e) = SF(e)
and wF(e) = tF(e). Since aF,, E D and D is closed under finite intersections,
it follows that, if XF E XF for F E S, then (XF)FES = s(e) if and only if XF =
sF(e) for almost all F, and (XF)FES = t(e) if and only if xF = tF(e) for almost
all F. (That is, the sets IF E S I XF = SF(e)} and IF E S I XF = tF(e)}
belong to D).
It follows easily that s(e), t(e) are independent of the choice of the elements
VF. It also follows that 0 is one-to-one. For if e, f E E, s(e) = s(f) and
t(e) = t(f), then sF(e) = sF(f) and tF(e) = tF(f) for almost all F, in
particular for at least one choice of F E S. But this implies e = f since TF
has no circuits of length 2. We have to show 0 is an embedding of protrees.
Suppose e, f E E and e< f. Let Fi = Ge U Ge* U G f U G f *, so Fl E S.
For all F E aF we have [sF(f ), tF(e)] = [sF(f ), tFWI SF (e), tF(e)] and since
aF, E D, it follows that

d(s(f), t(e)) = d(s(f), t(f)) + d(t(f), s(e)) + d(s(e), t(e))

hence, by (2.14) (b) in [1], [s(f ), t(e)] = [s(f ), t(f ), s(e), t(e)]. Thus O(e) <
0(f), and ¢ is order preserving.
If e E E, let Fo = Ge U Ge*, so Fo E S and for all F E aFO, sF(e*) = tF(e).
Since aFO E D, it follows that s(e*) = t(e) for all e E E, hence s(e) = t(e*)
and O(e*) = O(e)*, as required.
Finally, we have to show that 0 is G-equivariant. Let g E G and e E E.
Again let FO = Ge U Ge*. For F E aF0, TF is a G-tree, so

(uF(9e), VF (9e)) = (sF(9e), tF(9e)) = (98F (e), 9tF(e)) = (9uF(e), 9vF(e))

By definition, gs(e) = (guF(e))FES, and this is equal to (uF(ge))FES, i.e. to
s(ge), since aFO E D. Similarly gt(e) = t(ge), so g¢(e) = q(ge), and the proof
is complete.

We end by noting that Theorem 2 cannot be strengthened to the statement
that any protree E is isomorphic to E(X) for some suitable A-tree X. For
example, let Eo = E(X), where X is Z, viewed as a 7L-tree. Thus Eo =
{(m, n) I m, n E Z and Im - nI = 1}. Let 0 = {(n, n + 1) I n E Z}, so
O E VEo (indeed 0 = OE where E is one of the ends of Z). Now take 3 copies
of E0, i.e. let E = Eo x {1, 2, 3}. For e, e' E Eo and k, k' E {1, 2, 3}, define
(e, k) < (e', k') to mean that either k = k' and e < e' in E0, or k # k', e' E 0
and e ¢ O. Also, define (e, k)* to be (e*, k). It is easily checked that this
makes E into a protree.
Let 0' = 0 x {1,2,3}, so 0' is an orientation of E, and in fact 0' E VE.
For if (e, k) E 0' and (e, k) < (e', k'), then e E 0, so k = k' and e < e', hence
e' E 0 and (e', k') E 0'. We claim that there are three directions at 0' in
E, namely the equivalence classes of e; = ((0, 1), i) for i = 1, 2 and 3. For
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suppose e E 0 and k E {1, 2, 3}. Then either (e, k) < ek or ek < (e, k), so
(e, k) - ek. If eti e;, then there exists g E 0 and k E {1, 2, 3} such that
e, > (g, k) and e; (g, k). Since g E 0, this implies i = k = j, establishing
the claim.
Suppose there is an isomorphism of protrees : E -i E(X), where (X, d)
is a A-tree and A is an ordered abelian group with a least positive element
1. By Lemma 2 and Theorem 1, 0(O') = 0,,, for some w E X. Now X has
more than one point, since E is non-empty, so there is a point of X, say u,
at distance 1 from w. Then (u, w) E 0,,,, so (u, w) = q(e) for some e E 0.
We can write e = ((n, n + 1), k) for some n E Z and k E {1, 2, 3}. Let
f = ((n + 1, n + 2), k), so f c 0', and ¢(f) = (u', w') for some u', w' E X.
Since e > f , q(e) > 0(f ), that is, [u, w'] = [u, w, u', w']. It is easy to see that
there is no edge g E E such that e > g > f, and it follows that w = u', so
q5(f) = (w, w'). But then 0(f *) E 0,,,, hence f * E 0', a contradiction, so no
such isomorphism 0 exists.
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1. Introduction

Let G be a group and k be a commutative ring. The k-algebra R is said to
be graded by G if it has a direct sum decomposition as k-modules

R = ® R9
gEG

such that R9Rh C R9h for all g, h E G. We call Rl the base ring. For example,
if one wants to study the group algebra R = k[' where F/N = G then it is
sometimes useful to consider R as being G-graded with RN. = kNx and base
ring kN. In this case R = kN * G is a crossed product of G over kN and thus
a strongly G-graded k-algebra since kNxkNy = kNxy for all Nx, Ny E G.
We shall elaborate on this in Section 2. Most of what we describe is true for
arbitrary k but for simplicity we shall assume that k = Z and from now on
R will denote a strongly graded ring (i.e. 7L-algebra) unless otherwise stated.
The purpose of this paper is to describe some techniques for studying certain
homological properties of R and of the category of (right) R-modules. Much
of what we shall say is already known but it seems worthwhile to collect
this material for group theorists since some of the known (and hopefully
future) applications have a homological group theory flavour. From a group
theoretical point of view the main problem with (but also the main interest in)
studying strongly graded rings is that although G is not in general isomorphic
to a subgroup of U(R), the units of R, its group structure has a great influence
on the ring structure of R (which is not the case for arbitrary graded rings.)
The unifying theme of the paper is to use homological algebra and group

The author was supported by a CRM Postdoctoral Fellowship
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actions to translate properties of simpler objects , i.e. group rings and skew
group rings where G C U(R), into the more general setting.
In Section 3 we describe Cohen-Montgomery duality for rings which are graded
by finite groups [12]. Let F be a finite group, let R be an F-graded ring, let
MF (R) be the matrix ring over R with rows and columns indexed by F, and
let R#F* be the smash product which we shall define later. We shall sketch
the proof of the following duality theorem [12, Theorem 2.12 and Theorem
3.2] .

Theorem 1.1. (Cohen-Montgomery) The matrix ring MF(R) is isomorphic
to the skew group ring (ROF*)F. Furthermore, if R is strongly graded then
R#F* is Morita equivalent to R, .

Therefore, since R is Morita equivalent to MF (R), we can study R-modules by
studying modules over a skew group ring whose base ring is Morita equivalent
to that of R. As an illustration we prove a version of Maschke's theorem for
strongly graded rings.
If the group is infinite then the duality construction can be extended in various
ways. Unfortunately, we then find ourselves faced with infinitely indexed
matrix rings and thus lose Morita equivalence. The question is then: Which
type of matrix ring to use in a given situation?
Quinn discovered one such construction which has proved useful for answering
ring theoretic questions concerning (graded) ideals [31]. The construction we
shall use differs slightly from Quinn's in that the matrix algebra is nonunital.
However it is a direct limit of ordinary matrix rings and this is often enough
to solve problems of a homological (though not cohomological) nature. We
then show how the Hochschild homology and, if G is torsion free, the cyclic
homology groups of strongly graded algebras can be computed by using du-
ality together with the corresponding results for skew group rings in [27] and
[19].

If S is a ring then there are Connes' shift operators or :

and Chern characters ch : Ko(S) -+ for every integer
n, with a ch,,. In particular the Hattori-Stallings rank function
cho factors through the higher cyclic homology groups. Eckmann has used
this fact to prove the strong Bass conjecture for rational group algebras of
some classes of groups [18]. We show how Eckmann's result can be slightly
extended by computing the cyclic homology of certain crossed products.
In Section 4 we review the tensor identity for strongly graded rings (see [15])
and describe some applications. If R is G graded , M is a right R-module and
V is a right ZG-module then M ® V has a right R-module structure and in
particular M®Z[H\G] is an R-module for every subgroup H of G. Let RH be
the subring of R supported on the homogeneous components corresponding
to elements of H. The tensor identity states that
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Lemma 1.2. If R is a strongly graded ring then M ® Z[H\G] ?' M OR,, R
as R-modules

The main applications of the tensor identity so far have been in proving
that an R-module M has finite projective dimension if it has finite projective
dimension over RH for every subgroup H of G belonging to a some class of
groups X [23] and [24]. The basic strategy is to find naturally occurring long
exact sequences

0

V is a direct sum of permutation modules of the form Z[H\G]
with H E X, and then to tensor this sequence with M since M ® V is a
projective R-module by the tensor identity. This happens, for example, if
G E H1L.

Definition 1.3. H1X is the class of groups which admit a cellular action
on a finite dimensional contractible cell complex with isotropy subgroups in
x. In particular H1 is the class of groups which admit an action with finite
isotropy groups.

The class H1 (strictly) includes all groups of finite virtual cohomological di-
mension and seems to be the correct setting for studying such groups. For ex-
ample Theorem 1.8 and Theorem 1.10 generalise known results about groups
of finite virtual cohomological dimension to groups in H1,3. Many of the re-
sults in this paper concerning groups in H1 have also been proved for the
much larger class Ha if one restricts to modules of type FPS.
To illustrate how the tensor identity is used we prove the following version of
Chouinard's theorem for strongly graded rings [2]:

Theorem 1.4. (Aljadef-Ginosar) Let F be a finite group, let R be an F-
graded ring and let M be an R-module. Then M is a projective R-module
if and only if M is projective as an RE-module for all elementary abelian
subgroups E of F.

The idea in the proof is to use the tensor identity twice, first to reduce to
Sylow p-subgroups of F and then to reduce from p-groups to elementary
abelian p-subgroups by an induction argument.
Let k be a field of characteristic p > 0 and let M be a finitely generated kF-
module. The theory of varieties of modules has been developed by several
authors in recent years and has proved to be very powerful. See [7, Chapter
5] for an overview and references to other work. Basically the idea is to study
the commutative ring

(®n>O H2i(F, k) if p # 2,
H(F,k)= =

H'(F,k) ifp=2
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using techniques from algebraic geometry. Let VF denote the affine algebraic
variety of the maximal ideal spectrum of H'(F, k). One associates a subva-
riety VF(M) to the module and the dimension of this variety is equal to the
complexity CF(M) of M. Let

-pP2-*PI -3PO -*M-*0
be a minimal projective resolution of M [6, p.29].

Definition 1.5. The complexity cF(M) of the module M is defined to be
the least integer s such that there is a constant rc > 0 with

dimk P < rc.n'-'.

Alperin and Evens have shown that CF (M) is equal to the maximal complexity
cE(M) of the restriction of M to elementary subgroups E of F [1]. It would
be interesting to develop a complexity theory for group algebras of arbitrary
groups or even for more general types of ring, but this seems out of reach
with present methods.
However, if CF(M) = 0 then it follows that M is projective and this situation
had already been covered by Chouinard [11]. Thus in some sense Theorem 1.4
can be considered as the `complexity zero' case for strongly graded rings over
finite groups.
As another application of the tensor identity we prove the following theorem
[15].

Theorem 1.6. (Cornick-Kropholler)
Suppose G E H1a and H is a subgroup of G of finite index. Let R be a
G-graded ring and let M be an R-module. Then M is a projective as an R-
module if and only if it is projective as an RH-module and as an RF-module
for all finite subgroups F of G.

Using Theorems 1.4 and 1.6 we outline a proof of a theorem which was proved
during the conference [3].

Conjecture 1.7. (Moore) Let G be a group, let H be a subgroup of finite
index and let S be a ring. Suppose that for every g E G - H, either

1 g has finite order invertible in S, or
2 there exists an integer n such that g' E H - {1}.

Then every SG-module M which is projective over SH is also projective over
SG.

Notice that the conjecture makes sense for strongly graded rings where R
takes the place of SG, RH takes the place of SH and the condition that g
has finite order invertible in S is replaced by the condition that g has finite
order invertible in R1. If these conditions are satisfied we say that the triple
(R, G, H) satisfies the Moore condition.
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Theorem 1.8. Let G be a group in Hla, let H be a subgroup of finite
index and let R be a strongly G-graded ring. If (R, G, H) satisfies the Moore
condition and M is an R-module which is projective over RH then M is a
projective R-module.

Finally in Section 5 we turn our attention to the complete cohomology theory
invented independently by Vogel (see Goichot's paper [22]) and Mislin [29].
Recall that for any ring S and S-modules M and N, there are complete coho-
mology groups Exts(M, N) defined for every integer n. There has been con-
siderable progress in developing this theory. For example, proj.dims(M) < oo
if and only if Exts(M, M) [23] and this fact has been used in several subse-
quent papers ([24], [25], [14], [15]). However it has proved difficult to actually
compute the complete cohomology of specific examples.
When G is a group of finite virtual cohomological dimension and M is a
ZG-module then ExtZG(Z, M) = H*(G, M) (Tate-Farrell cohomology.) The
advantage with Tate-Farrell cohomology is that it is that it is defined using
complete resolutions and so techniques such as Shapiro's Lemma and spectral
sequences are available for computation [9, Chapter X]. Under what other
conditions do complete resolutions exist, and when can they be used to com-
pute complete cohomology groups?
The first observation to make is that complete cohomology disappears on
projective modules. With this in mind we make the following definition.

Definition 1.9. Let S be a ring and let M be an S-module. Then a complete
resolution of M is an acyclic sequence of projective S-modules P. = (P., b),
indexed by the integers, such that

P. agrees with a projective resolution of M in sufficiently high dimen-
sions.
Homs(P., Q) is acyclic for every projective S-module Q.

We remark that only the first part of the definition is used in defining complete
resolutions in Tate-Farrell cohomology, but it automatically follows that these
cohomology groups vanish on projective (even induced) modules.
Most importantly we first show that if P. is a complete resolution of M then

Exts(M, N) = H'(Homs(P., N))

for every S-module N. Returning to strongly graded rings we prove the follow-
ing theorem which describes circumstances under which complete resolutions
exist with an explicit construction.

Theorem 1.10. Let G be a group in the class Hl%, let R be a strongly
G-graded ring and let M be an R-module such that proj.dimR, M < oo Then
M has a complete resolution.
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As a corollary to this theorem we prove a version of Shapiro's Lemma for the
complete cohomology of strongly graded rings.

2. Strongly graded rings

In this section we define strongly graded rings and discuss some basic exam-
ples and properties which we will need later. The reader is referred to Dade's
paper [17] or Passman's book [30] for further background information.

Definition 2.1. Let G be a group.
The ring R is strongly G-graded if it has a direct sum decomposition as
abelian groups R = ®9EG S9 such that R9Rh = R9h for all g, h E G.
The subring R1 is called the base ring of R.
If X is subset of G then Rx = ®9Ex R. In particular if H is a subgroup
of G then RH is subring of R.

As mentioned in the introduction strongly graded rings are a generalisation of
other well known types of ring. We choose to work in this setting rather than
with crossed products because the proofs seem to become more streamlined.

Definition 2.2. Let R be a strongly graded ring and let U(R) denote the
units of R.

If there exists u9 E U(R) fl R9 for every g E G then R is a crossed
product, and in this case R = ®9EG R1u9.
If the set {u9 : g E G} forms a subgroup of U(R) thenR = R1G is a skew
group ring. In this case there is a group homomorphism G -p Aut(R1)
defined by g H (r H u91ru9).
If the homomorphism is trivial then R is the group ring R1 [G].

We have the following examples when S is a ring, 1 -+ N -> r --p G --+ 1
is a group extension and R = Sr is the group ring.

Example 2.3. R is a strongly G-graded ring with base ring SN and Nx
component SNx for Nx E t/N = G. In fact

1 R = SN * G is a crossed product of G over SN because x E SNx is a
unit.

2 If the group extension is split then R = (SN)G is a skew group ring
since the coset representatives may be chosen to form a subgroup of F.

3 If r = N x G then R = S[N x G] =' SN[G] is a group ring.

It has proved useful in some applications to use the following equivalent def-
inition of G-graded rings [15].
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Definition 2.4. A G-graded ring is a ring R together with a ring homo-
morphism ry : R -+ R 0 ZG which makes R a ZG-comodule, and in this
case

R9= {r ER:7(r)=r®g}.
The advantage with this definition is that if M is an R-module and V is a
ZG-module then M®V has a right R-module structure via the semi-diagonal
action (m ®v) r = mr ®vg where m E M, v E V and r E R9. We will use
this fact to deduce the tensor identity for strongly graded rings in Section
4. Similarly if N is an R-module we can define a semi-diagonal action on
Homz(V, N) by Or(V) = (¢(vg-'))r. The functors _® V and Homz(V, -) from
R-modules to itself are adjoint [15, Lemma 3.2].

Lemma 2.5. HomR(M 0 V, N) = HomR(M, Homz(V, N)).

3. Cohen-Montgomery duality
Before we describe the duality construction it will be useful to recall some
facts about Morita contexts [4, pp. 60-74].

3.1. Morita contexts
Let S and T be rings, let M be an S-T-bimodule and let N be a T-S-bimodule.

Definition 3.1. A Morita context is a 6-tuple (S, T, M, N, 0, 0) where

0: M®TN ---- S and 0: N®SM -T
are bimodule maps satisfying the associativity conditions 4(m 0 n) m =
m-0(nom) and all mEM,nEN.

Theorem 3.2. Let (S, T, M, N, 0, 0) be a Morita context.
1 If 0 is a surjection then it is an isomorphism and M and N are finitely

generated projective T-modules. Similarly for 0 and S.
2 If 0 and 0 are both isomorphisms then S and T are Morita equivalent,

and there is a category equivalence - ®s M : Mod S -4 Mod T with
inverse N ®T -.

S If in addition S = T then P and Q are invertible bimodules. Thus

[P], [Q] E Pic(S)

the Picard group of S, and [P]-' = [Q].

We illustrate this theorem with the standard example of matrix rings. Let T
denote the matrix ring over the unital ring S, let be the S-
T-bimodule of row matrices of length n and let be the corresponding
T-S-bimodule of column matrices. Then we have a Morita context

(S, T, Row, (S), Col.(S), 0, 0)
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where 0 and 0 are given by matrix multiplication. Since S is unital it is easy
to see that 0 and 0 are both surjections and so S and are Morita
equivalent.

3.2. Finite Groups and Maschke's Theorem

Definition 3.3. Let F be a finite group, let g and h be arbitrary elements
of F and let R be an F-graded ring.

1 MF(R) is the matrix ring over R with rows and columns indexed by F.
RowF(R) and Co1F(R) are then defined in the obvious way.

2 e9,h E MF (R) is the element with 1 in the g, h-position and zeros else-
where. Similarly for p9 E RowF(R) and K9 E Co1F(R).

3 R#F* = E,g,hEF R9h-1e9,h is a subring of MF(R) called the smash product.

Proof of Theorem 1.1 We identify R as a subring R#F* via the ring monomor-
phism u where

p(r) = E reh,9-lh, r E R9.
hEF

Similarly we identify F as a subgroup of U(MF(R)) via the group monomor-
phism v where

v(g) = E eh,h9,
hEF

and observe that F acts on R#F* by matrix conjugation. It is easy to check
that EgEF RAF*g C MF(R) is a direct sum and is in fact equal to MF(R).
Thus the first part of the theorem is proved.
For the second part let P = ®9EF R9-1 pg and Q = ®gEF R9,c9. Then we have
a Morita context (R1, ROF*, P, Q, 0, 0) where 0 and 0 are given by matrix
multiplication. The map 0 is clearly a surjection and 0 is a surjection since
R is strongly graded.

Although the calculations in the proof are easy to check, they are also tedious.
Thus it is worthwhile to keep the next example in mind.

Example 3.4. Let F = C3 = {1, g, h}, let R = R1® R9 ® Rh be a strongly
F-graded ring and let r = r1 + r9 + rh be an element of R. Then

R1 Rh R9 r1 rh r9

R#F* = R9 R1 Rh and µ(r1 + r9 + rh) = r9 r1 rh

Rh R9 R1 rh r9 r1

The group F is embedded in U(MF(R)) by the regular representation

V(1) =

1

0

0 0

1 0 , v(g) =

0

0 , v(h) =101 1 0

1

0

0 0 1 1 0 0 0 1 0
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and so
R1 Rh Ry Ry R1 Rh Rh R9 R1

MF(R) = R9 R1 Rh Rh R9 R1 R1 Rh R9

Rh R9 R1 R1 Rh R9 R9 R1 Rh

I I n n n

(ROF*)F ROF* R#F*g ROF*h

As an illustration of the duality theorem we prove the following variation of
Maschke's Theorem which we will need in Section 4 [30, Chapter 1].

Theorem 3.5. Let F be a finite group and let R be a strongly F-graded ring
such that IFI E U(R1). Then every R-module M which is projective as an
R1-module is also projective as an R-module.

Proof By Morita equivalence it is enough to show that RowF(M) is a pro-
jective MF(R)-module. Recall that P = ®gEF Ry-1 py and that there is a
category equivalence - ®R1 P : Mod R1 -+ Mod ROF*. It is easy to see that

RowF(M)IRUF* = ®R1 P

and so ROWF(M)IRUF. is projective. Thus we may assume that R = ®9EF R1uy
is a skew group ring.
Choose a free R-module V which maps onto M. Since M is projective over
R1 there is an R1-homomorphism a : M -+ V which splits the surjection.
But then, using the usual averaging trick, we can split the surjection with the
R-homomorphism

m H 1/IFI E a(muy-i)uy.
9EF

3.3 Infinite groups: Hochschild and cyclic homology

Turning now to infinite groups we denote by MG(R) the ring of row and
column finite matrices indexed by G with entries from R and by MG(R) the
ideal of MG(R) whose elements have only finitely many non-zero entries. If
J is the set of finite subsets of G then

MG(R) = lim MX(R)
XE.F

is a direct limit of ordinary matrix rings over R. Of course, if G is finite then
MG(R) = MG(R) is the usual matrix ring.
The homomorphisms p : R -3 MG(R) and v : G -* U(MG(R)) still make
sense if G is infinite and we put ROG* = >1,4EF Ryh-1ey,h n MG(R). There is
an action of G on the non-unital ring ROG* by matrix conjugation in MG(R)
and one can deduce [13, Theorem 2.8].
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Theorem 3.6. MA(R) = (R#G*)G, the skew group ring of G over ROG*.

We use this theorem to to compute the Hochschild homology and, if G is
torsion free, the cyclic homology groups of strongly graded rings. The reader
unfamilar with these homology theories is referred to [26] for definitions and
properties. We first reduce to the case of skew group rings [13, Theorem 2.11].

Corollary 3.7. HH,(R) = HH,((R#G`)G) and HC,(R) =' HC,((ROG*)G).

Proof HH.(R) and HC,(R) are Morita invariants of the ring R (e.g. [27])
and commute with direct limits (since they are homology theories).

Let T(G) denote the set of conjugacy classes in G with [g] E T(G) representing
the conjugacy class of g E G. Then the homology groups of R have a direct
sum decomposition indexed by elements of T(G):

HH.(R) _ ® HH,(R)[9] and HC,(R) = ® HC,(R)[9].
[9]ET(G) [g]ET(G)

Example 3.8. If S[G] is a group ring then HHo(S[G]) = HCo(S[G]) _
ST(G).

If R = R1G = ®9EG R1u9 is a skew group ring and g E G, then there is an
action of CG(g) on the Hochschild complex C. (R1, R, u,) by

(r ® r1 ® ... ® rn)x = (ux 1ru9ux ® ux 1r,ux (D ... 0 ux 1rnux), x E CG(9)

Similarly there is an action on the acyclic Hochschild complex C'(R1) and
thus an action on TotC(R,). One can then prove the following [13].

Theorem 3.9. Let R be a strongly G-graded ring. Then
1 for all g E G there is a first quadrant spectral sequence

(E[g])P,q = HP(CG(9), HHq(R1, R9))==>HH,+q(R)[9].

2 There is a first quadrant spectral sequence

(E[1j)P,q = HP(G, HCq(R1))ZHC,,+q(R)[1]

S If g E G has infinite order then there is a first quadrant spectral sequence

(E[9])P,q = HP(CG(9)/(9), HHq(R1, R.,))= HCp+q(R)[g]

Proof(sketch) This essentially follows from the corresponding results for skew
group rings ([27, Proposition 2.6], [19, Theorem 4.1.1]) and Corollary 3.7. One
must check the following:

1 The isomorphisms in Corollary 3.7 respect [g]-components. This is an
easy computation.
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2 HHq(Ri, Rg) = HHq(R#G*, R#G*g) as abelian groups. This follows from
the fact that R1 and ROG* are Morita equivalent if G is finite, Morita
invariance of Hochschild homology and a direct limit argument.

3 The existence of an action of CG(g) on HHH(RI, Rg) which makes the
isomorphism into a 7LCG(g)-isomorphism. There is a Morita context

(R1, R1, Rg, R9-1, 0, 9)

where the maps are given by multiplication in R and are surjections since
R is strongly graded. Thus Rg is an invertible bimodule by Theorem 3.2
and so there is a group homomorphism G -* Pic(R1) defined by g H
[R9]. We have our action since finitely generated projective modules
induce homorphisms on Hochschild homology [27].

Example 3.10. Let r be a countable group which is an extension of a
locally finite group N by a torsion free group G, and let To (I') (respectively
T1(G)) denote the set of conjugacy classes of elements of finite (respectively
infinite) order. Using Burghelea's description of the cyclic homology of group
algebras [10] we know that HC* (Qr) = A ® B where

A= ® H*(Cr('y)/('y), Q) ®HC*(Q)
[7[ETO(r)

and

B= ® H*(Cr('y)/('y),Q)
['Y)ET1(r)

Alternatively we may regard QI' as the crossed product R = QN * G. In this
case

HC*(R) = HC*(R)[1] ® ® HC*(R)[g]
[g01]ET(G)

and one can check that HC*(R)[1] = A and ®[g#1]ET(G) HC*(R)[g] = B. The
advantage with this description is that we can use the properties of N and G
to compute B.
To compute HC*(R)[g] we put g = Nx and observe that

HH*(R1, Rg) = H*(N,QNx)

where N acts on QNx by conjugation [28, p. 292]. Therefore the spectral
sequence collapses , because N has homological dimension zero over Q and
so

HC*(R)[g] = H*(CG(9)/(9), H0(N,QNx).

Now suppose further that G has finite homological dimension over Q and is
either a linear group in characteristic 0 or a soluble group. Eckmann has
shown that CG(g)/(g) has finite homological dimension over Q for all g E G
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[18] and deduced that the strong Bass conjecture holds for the rational group
algebras of such groups. Thus in our situation HCn(R)[9, = 0 for n >> 0 and
hence the strong Bass conjecture holds for Q (see [5] for the statement of
this conjecture.)

4. The tensor identity

Let R be a strongly G-graded ring, let M be an R-module and let H be a
subgroup of G. We first prove the tensor identity.

Proof of Lemma 1.2 There is an R-module homorphism

M®R,R-M®Z[H\G]

defined by
m®rHmr®Hg

for r E R9. Since R is strongly graded we may choose finite collections
xi E R9-, and y, E R9 such that E; xiy, = 1. The inverse homomorphism

M ®Z[H\G] -* M ®RH R

is defined by
m®Hg r->mx;®y;.

We have already seen in the previous section that R. is projective as an R1-
module, and it follows that R is projective over R1. As a first application of
the tensor identity we show that more is true [15, Lemma 6.2].

Lemma 4.1. R is projective as an RH-module for all subgroups H of G.

Proof Since RH is a direct summand of R as a RH-RH-bimodule it suffices
to show that R®RH R is a projective R-module. Using the tensor identity we
see that

R ®RH R = R ®7L[H\G].

so it is enough to show that HomR(R ® 7L[H\G], -) is exact.
If N is any R-module then there is a natural isomorphism

HomR(R ® 7L[H\G], N) -> Homz(Z[H\G], N),

defined by
0(1(9 Hg)),

and Homz(Z[H\G], -) is exact because Z[H\G] is free as a 7L-module.
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4.1. Chouinard's Theorem for strongly graded rings

Theorem 1.4 was originally proved by Aljadeff and Ginosar using trace maps
and a variation on the tensor identity. We outline an alternative proof, due
to Benson and Kropholler.
Reduction to p-groups:

Lemma 4.2. Let F be a finite group, let pi,.. . , pn be the distinct primes
dividing the order of F and let Pi be a Sylow pi-subgroup. Then the trivial
ZF-module Z is a direct summand of the permutation module

n

z[Pi\F]i-
Proof Let t : Z _+ ®,"_ Z[Pi\F] be defined by 1 ---+ (,, ... , bn) where
bi denotes the sum of the distinct cosets of Pi in F. To split this map set
mi := IF: Pig, choose integers li such that E 1 limi = 1 and define

n

6 = (61i...,61) : ®Z[Pi\F] -p Z
i=1

by

(171i ... , 71n) F-+ 1161 (771) + ... + lnEn(17n)

where ei is the augmentation map. One checks that 6t is the identity map on
Z and the result follows.

Lemma 4.3. Let R be a strongly F-graded ring and let M be an R-module
which is projective over Rp for each Sylow p-subgroup P of F. Then M is
projective over R.

Proof Tensoring the map t in the previous lemma with M and applying the
tensor identity we see that M is a direct summand of

n

®M®Rpi R
i=1

and the result follows by the hypothesis on M.

Thus we may assume that F = P is a finite p-group. Recall that (for any
ring) elements of Extn (M, N) correspond to equivalence classes of sequences

0-aN-4 En_1-*...-AEI--Eo-->M--+0
if n > 0 and multiplication in ExtR(M, M) corresponds to concatenation of
(equivalence classes of) sequences. We shall need the following fact about
the correspondence:
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Lemma 4.4. If the exact sequence

M-*0
represents zero in Extn (M, N), and if in addition each E1 is a projective
R-module, then N is a projective R-module.

Proof Extend the sequence

En_, -+ ...-+ E, -*E0->M-*0
to a projective resolution E. of M. There is an induced map 4 : En -* N
and by the correspondence 0 is a coboundary. Therefore ¢ factors through
Ett_, and so N --> En_, is split.

Let ,3 : H1(P, Z/pZ) -* H2 (P, 7G) be the connecting homomorphism in the
long exact cohomology sequence corresponding to the short exact sequence

0-*Z-+Z-*Z/pZ---+ 0.
A non-zero element x of H1 (P, Z/pZ) may be regarded as a homomorphism
from P onto Z/pZ with kernel H and the element Q(x) in H2(P , 7G) _
Ext2 P(Z, 7G) corresponds to a four term exact sequence

0-*Z-*7L[H\P]-a7L[H\P]-*Z-*0.
Thus if x1, . . . , x,, is a sequence of non-zero elements of H'(P, Z/pZ) then

,3(xl) ..... /3(x,) E H2n(P, Z)

corresponds to an exact sequence

0-*7G-+ E20_, - +E , -*Eo-+Z-4 0
where E2i_, = E2i_2 = Z[Hi\P] and Hi is the kernel of xi.

Proof of Theorem 1.4 We have reduced to the case where P is a p-group.
Let R be a strongly P-graded ring and let M be an R-module which is
projective over RE for all elementary abelian p-subgroups E of P. We need
to show that M is projective over R. Clearly we may assume that P is not
elementary abelian, and by induction that M is projective over RH for all
proper subgroups H of P.
By a theorem of Serre [7, Theorem 4.7.3], there exists a sequence X1 ,. .. , xn
of non-zero elements in H' (P, 7L/pZ) such that

,3(x,) .... Q(xn) = 0 E H2n(P, Z).
Thus there is a sequence

0-*Z-+E2n_1 Eo-*Z-*0
as above which represents the zero element in H2n(P, Z). Tensoring this
sequence with M and letting R act semi-diagonally we have the exact sequence

M®E,-3M®Eo-*M-*0
which represents the zero element in Ext2Rn(M, M). By the tensor identity
M ® E; is isomorphic to M ®RH, R (where j = 2i - 1 or 2i - 2), and these
modules are projective. Therefore M is projective by Lemma 4.4.
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4.2. Moore's Conjecture

J. Cornick

Let G be a group, let H be a subgroup of finite index and let R be a strongly
G-graded ring. In this section we consider the question: If M is an R-module
which is projective over RH, then is it projective over R?
Of course this is not true in general. If F is a non-trivial finite group and S
is a ring, then S is a projective S[F]-module if and only if the order of F is
invertible in S by Maschke's Theorem.
Thus, it is necessary to impose additional restrictions on R, G and H. Recall
from the introduction that (R, G, H) satisfies the Moore condition if for all
g E G - H either

1 g has finite order invertible in R1, or
2 there exists an integer n such that g" E H - {1}.

If G is finite and (R, G, H) satisfies the Moore condition then Theorem 1.4
provides a positive answer to the question. To deal with arbitrary groups one
looks for situations where it is possible to reduce to the finite case. One such
situation is described in Theorem 1.6.

Proof of Theorem 1.6 It is enough to show that M has finite projective
dimension over R since proj.dimR M = proj.dirRH M if the former is finite
[15, Lemma 6.6].

The group G acts on a finite dimensional contractible cell complex X with
finite cell stabilisers. Let

0-4

be the cellular chain complex of X where each C, is isomorphic to

(D Z[G,\G],
oE£i

E. is a set of G-orbit representatives of i-dimensional cells in X, and G. is
the (finite) isotropy group of the cell o E E;. Tensoring the sequence with M
and letting R act semi-diagonally we have the exact sequence of R-modules

0 * M®C, -+ ... -+ M®Cl -+ M®Co -+ M _4 0.

Applying the tensor identity we see that M ® C; is isomorphic to

® M ®R0o R
oE£i

which is projective by hypothesis and so proj.dimR(M) is finite.
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Proof of Theorem 1.8 We need to show that M is projective over RF for
every finite subgroup F of G and then the result will follow from Theorem 1.6.
Consequently, in view of Theorem 1.4, we need only show that M is projective
as an RE-module for every elementary abelian subgroup E of G.
First observe that M is projective over R1 because RH is a projective R1-
module. Let p be a prime and let E be an elementary abelian p-subgroup
of G. If p is invertible in R1 then M is projective over RE by Theorem 3.5.
Every non-trivial element of E has order p, and so if p is not invertible then
E is contained in H by the Moore condition. Therefore M is projective over
RE because RH is projective over RE by Lemma 4.1.

Corollary 4.5. (Serre) Let G be a torsion free group of finite virtual coho-
mological dimension. Then G has finite cohomological dimension.

Proof Let
-+PO __4Z-40

be an augmented projective resolution of Z as a ZG-module, and suppose
that H is a normal subgroup of G with IG : HI < oo and cd(H) = n, so
the kernel K of the map Pn_1 --> Ptt_2 is projective as a 7LH-module. The
triple (Z, G, H) clearly satisfies the Moore condition and G E Hla since it
has finite virtual cohomological dimension. It follows from the theorem that
K is a projective ZG-module.

5. Complete Resolutions
Let S be a ring and let M and N be S-modules. The complete cohomology
groups Exts(M, N) can be defined in various ways. For example if

...--3Q2-j Q1 -*Q0->N--+ 0
is a projective resolution of N and Ki is the kernel of Qi -* Qz_1 then

Exts(M, N) = lim Exts(M, Ki_(n+1))
i>n+1

where the homomorphisms in the direct limit system are the connecting ho-
momorphisms in the long exact Ext-sequences induced by the short exact
sequences Ki ---* Qi --+ Ki_1 [29]. See also [22], [8], and [24] where the
terminology `complete cohomology' was introduced.
One can see that this definition does not lend itself easily to computation,
so with the special case of Tate-Farrell cohomology in mind we introduced
our alternative Definition 1.9 of complete resolutions in Section 1. In this
section we outline some results which will appear in [16], ignoring many of
the technical details such as homotopy equivalence of complete resolutions.
Of course we need to know the following result otherwise the definition is of
no use to us.
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Lemma 5.1. Let P. = (P., 5) be a complete resolution of the S-module M
and let N be an arbitrary S-module. Then

Exts(M, N) - H'(Homs(P., N)).

Proof The functor H'(Homs(P., _)) is a (-oo, oo)-cohomologicalfunctor from
S-modules to abelian groups [21], which disappears on projective modules.
Suppose that Q. = (Q., S) is an ordinary projective resolution of M which
agrees with P. in dimensions i > n for some positive integer n. Thus there is
a partial chain map ¢ = (o;>,,) P. -+ Q. and every ¢b an isomorphism
We first extend 0 to a chain map in all dimensions. By induction we need
only construct a map ¢n-, : Qn_1 -* Pn_, such that On_,S,i = dncn. By
hypothesis the sequence

Homs(Pn-,,Qn-1) -* Homs(P,,Qn-1)

is exact at Homs(Pn,Qn_1), so the element dn¢n E Homs(P,,,Qn_1) maps to
dnOnSn+l = dndn+lcn+1 = 0 E Homs(Pn+,, Q,y_1) and so there exists

q5n- E Homs(Pn-,, Qn-1)

such that On-,& = dngn as required. One can show that the chain map
constructed in this way is unique up to homotopy.
Therefore we have a morphism of (-oo, oo)-cohomological functors

Exts(M, -) -* H'(Homs(P., _))

where Exts(M, -) is defined to be zero if i < 0. The maps are isomorphisms
in dimensions i > n and thus there is an induced morphism

Exts(M, -) --* H*(Homs(P., _))

which is an equivalence by [29, Lemma 2.5].

Of course there is no point in making a definition if one does not have ex-
amples. Indeed we construct modules in [16] which cannot have a complete
resolution. However we do have a positive result for strongly graded rings.

Definition 5.2. Let G be a group. Then B(G, 7L) is the ring of bounded
functions from G to Z.

Lemma 5.3. (20, Corollary 97.4) B(G, Z) is a ZG-module which is free
abelian as an additive group.

The ring B = B(G, Z) is used in several of the proofs in [14] and [15] and we
shall have little to say about it here quoting results when we need them. For
example the next proposition follows easily from the proof of [15, Proposition
9.2].
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Proposition 5.4. Let G be a group in the class Hla, let R be a strongly
G-graded ring and let M be an R-module such that proj.dimR1 M < oo. Then

proj.dim M ®B < 00
R

where R acts semi-diagonally.

Proof of Theorem 1.10 By the previous proposition it is enough to show
that M has a complete resolution if proj.dimR M 0 B < oo. Since - ® B is
exact and R is projective over R, we may replace M by a suitable kernel in
a projective resolution of M over R and assume that M is projective over R,
and M 0 B is projective over R.
The inclusion Z -* B as constant functions is Z-split by f H f (1) and thus
we have a short exact sequence of ZG-modules

7L --+ B -- B (t)

and B is 7L-free. Let V denote the ZG-module B ' ® B for i > 0 (where
B®0 = Z). Tensoring (t) with B ` for each i > 0 we have short exact
sequences of ZG-modules

` -*V-+B'"
By splicing these short exact sequences together we have the long exact se-
quence V. of ZG-modules

0 -- f Z -4 Vo -* V, -
Now let Q. be a projective resolution of Z over ZG. By splicing Q. and
V. together, tensoring with M and letting R act semi-diagonally we have
an acyclic complex P. of R-modules where P. = M 0 Q; for i > 0 and
P_, = M 0 V for i > 1. We claim that P. is a complete resolution of M.
It follows from the tensor identity M®ZG = M®R, R , and so each M®Q; is
projective over R and M®Q. is a projective resolution of M. By Lemma 2.5,

HomR(M 0 V, -) HomR(M ® B, Homz(B®', _)).

and so M ® V is projective for all i > 0 because M ® B is projective and B '
is 7G-free. Therefore P. satisfies the first condition of the definition.
Now let X be a projective R-module. The inclusion Z -+ B induces an
R-split epimorphism Homz(B, X) -3 X and thus it suffices to show that
HomR(P., Homz(B, X)) is acyclic. Using Lemma 2.5 again we have

HomR(P., Homz(B, X)) ^_' HomR(P. (9 B, X).

The kernels of the complex P. 0 B are projective in dimensions > 0 because
M ® B is projective. In negative dimensions they have the form M 0 V
which we have already shown are projective. Therefore P. 0 B is split, so
HomR (P. (9 B, X) is acyclic and the second condition of the definition is
satisfied.
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Corollary 5.5. (Shapiro's Lemma) Let G, R and M be as in the theorem,
let H be a subgroup of G and let N be an RH-module. Then for all integers
n, there are natural isomorphisms

ExtRH (M, N) = ExtR(M, HomRH (R, N)).

Proof Since HomRH (P., N) = HomR(P., HomRH (R, N)) it suffices to show
that the complete resolution P. constructed in the theorem is also a com-
plete resolution of M as an RH-module. The first condition for a complete
resolution is clearly satisfied since R is a projective RH-module. Let Y be a
projective RH-module. The same argument as above shows that Y is a direct
summand of Homz(B(G, 7G), Y) as RH-modules and the result follows.

Remark 5.6. One can also construct spectral sequences in the standard
way, (see [16]).
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0. Introduction

Given a finitely generated Coxeter group W, I described, in [D, Section 14], a
certain contractible simplicial complex, here denoted JWJ, on which W acts
properly with compact quotient. After writing [D], I realized that there was
a similarly defined, contractible simplicial complex associated to any building
C. This complex is here denoted JCJ and called the "geometric realization"
of C. The definition is such that the geometric realization of each apartment
is isomorphic to JWI. (N. B. Our terminology does not agree with standard
usage. For example, if W is finite, then the usual Coxeter complex of W is
homeomorphic to a sphere, while our IWI is homeomorphic to the cone on
this sphere.)
There is a natural piecewise Euclidean metric on JWI (described in §9) so
that W acts as a group of isometries. Following an idea of Gromov ([G,
pp. 131-132]), Gabor Moussong proved in his Ph.D. thesis [M] that with this
metric JWI is "CAT(O)" (in the sense of [G]). This is equivalent to saying
that it is simply connected and "nonpositively curved". Moussong's result
implies, via a standard argument, the following theorem.

Theorem. The (correctly defined) geometric realization of any building is
CAT (0).

Although this theorem was known to Moussong, it is not included in [M].
The theorem implies, for example, that the Bruhat Tits Fixed Point Theorem
can be applied to any building. (See Corollary 11.9.)
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One of the purposes of this paper is to provide the "correct definition" of the
geometric realization JCJ and to give the "standard argument" for deducing
the above theorem from Moussong's result.
Another purpose is to explain and expand the results of [HM] and [Mei] on
graph products of groups. In fact, I was inspired to write this paper after
listening to J. Harlander's lecture at the Durham Conference on the results
of [HM]. I realized that graph products of groups provide nice examples of
buildings where the associated W is a right-angled Coxeter group.
Part I of this paper concerns the combinatorial theory of buildings. In §1,
§2, §3 and §6 we recall some relevant definitions and results from Ronan's
book [R]. In §4 we state a theorem of Tits [T] and use it in §5 to prove that
the chamber system associated to a graph product of groups is a building
(Theorem 5.1).
Part II concerns the geometric and topological properties of buildings. In §7,
we recall some basic definitions concerning CAT (0) spaces from [G], [Bri],
[Bro] and [CD1]. The definitions of JWI and JCJ are given in §9 and §10, re-
spectively. In §11 we prove the main theorem and deduce some consequences.
In particular, in Corollary 11.7, we apply the theorem in the case of a graph
product of groups.

I. The combinatorial theory of buildings

1. Chamber systems

A chamber system over a set I is a set C together with a family of partitions
of C indexed by I. The elements of C are chambers. Two chambers are
i-adjacent if they belong to the same subset in the partition corresponding to
i.

Example 1.1. Let G be a group, B a subgroup and (P2)iE, a family of
subgroups containing B. Define a chamber system C = C(G, B, (PI)iEI) as
follows: C = G/B and the chambers gB and g'B are i-adjacent if they have
the same image in G/Pi.

Let C be a chamber system over I. Let I' denote the free monoid on I.
(An element of I* is a word i = it ik, where each ij E I.) A gallery in
C is a finite sequence of chambers (co, c1, . , ck) such that cj_1 is adjacent
but not equal to c;,1 < j _< k. The gallery has type i = it ik if c;_1 is
i;-adjacent to c;. If each i; belongs to a given subset J of I, then it is a J-
gallery. A chamber system is connected (or J-connected) if any two chambers
can be joined by a gallery (or a J-gallery). The J-connected components of
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a chamber system C are called its J-residues. The rank of a chamber system
over I is the cardinality of I. A morphism cp : C -* C' of chamber systems
over the same set I is a map which preserves i-adjacency.
Suppose that G is a group of automorphisms of C which acts transitively on
C. Fix a chamber c E C and for each i E I choose an {i}-residue containing c.
Let B denote the stabilizer of c and P. the stabilizer of the {i}-residue. Then,
clearly, C is isomorphic to the chamber system C(G, B, (Pi)iE1) of Example
1.1.

Suppose C1, , Ck are chamber systems over I1, , Ik. Their direct product,
C, x x Ck, is a chamber system over the disjoint union I1 11 U. LI Ik. Its
elements are k-tuples (Cl, , ck) where c, E Ct. For i E It, (c1, . , ck) is
i-adjacent to (c'1, ... , ck) if c; = c' for j # t and ct and ct are i-adjacent.

2. Coxeter groups
A Coxeter matrix M over a set I is a symmetric matrix (mid), (i, j) E I X I,
with entries in N U {oo} such that for all i, j E I, mii = 1 and mi; > 2 for
i # j. If J is a subset of I, then Mj denotes the restriction of M to J, i.e.,
it is the matrix formed by the entries of M which are indexed by J x J.
For each i E I introduce a symbol si and let S = {sili E I}. The Coxeter
group determined by M is the group W (or W (M)) given by the presentation,
W = (Sj(sisj)mii = 1, for all (i,j) E I x I with mil ; oo). The natural map
S -* W is an injection ([B, p. 92]) and henceforth, we identify S with
its image in W. For any subset J of I, denote by W. the subgroup of W
generated by {s; j E J}. The case J = 0 corresponds to the trivial subgroup
of W.
The Coxeter matrix M (and the group W) are right-angled if each off-diagonal
entry of M is 2 or oo.
The matrix M is spherical if W is finite. A subset J of I is spherical if
W,('= W(M,)) is finite. Associated to M we have the poset Sf (or S'(M))
of all spherical subsets of I.
Suppose the i = i1 ik is an element in the free monoid P. Its value s(i)
is the element of W defined by s(i) = si, sik. Two words i and i' are
equivalent (with respect of M) if s(i) = s(i'). The word i is reduced (with
respect to M) if the word length of s(i) is k. (Alternative definitions of these
concepts in terms of "homotopies of words" can be found in [R, p. 17].)

3. Buildings

Let I, I*, M and W be as in §2.
A building of type M is a chamber system C over I such that

(1) for each i E I, each subset of the partition corresponding to i contains at
least two chambers, and
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(2) there exists a "W-valued distance function" 8 : C x C -+ W such that if
i is a reduced word in I' (with respect to M), then chambers c and c' can be
joined by a gallery of type i if and only if 6(c, c') = s(i)

Example 3.1. Let W be the chamber system C(W, {1}, (W{;})=EJ) where
the notation is as in Example 1.1. In other words, the set of chambers is
W and two chambers w and w' are i-adjacent if and only if w' = w or
w'= wsi. There is a W-valued distance function J: W x W -> W defined by
8(w, w') = w-1w'. Thus, W is a building, called the abstract Coxeter complex
of W.

Example 3.2. Suppose that C is a building of rank 1. Then W is the cyclic
group of order 2. There is only one possibility for 8 : C x C -+ W; it must
map the diagonal of C x C to the identity element and the complement of
the diagonal to the nontrivial element. Thus, any two chambers are adjacent.

Example 3.3. Suppose that M1, , Mk are Coxeter matrices over I,, , Ik,
respectively. Let I denote the disjoint union Il LI LI Ik and define a Coxeter
matrix M over I by setting mij equal to the corresponding entry of Mt when-
ever i, j belong to the same component It of I and mij = 2 when they belong
to different components. Then W = W1 x ... x Wk where W = W (M) and
Wt = W (Mt). Suppose that C1, , Ck are buildings over I,, , Ik. As in
§1, their direct product C = C1 x ... x Ck is a chamber system over I. More-
over, the direct product of the Wt-valued distance functions gives a W-valued
distance function on C. Hence, C is a building of type M.

4. A theorem of Tits

I, M, W and Sf are as in §2. Suppose that G is a chamber-transitive group
of automorphisms on a building C of type M. Choose a chamber c E C
and for each J E-Sf a J-residue containing c. Let Pj denote the stabilizer
of this J-residue and B (= PO) the stabilizer of c. Set Pi = P{i}, so that
C = C(G, B, (P2)iEI). We note that PJ is just the subgroup generated by
(Pj)jEJ-
Thus, the chamber-transitive automorphism group G gives the following data:
for each J E Sf, there is a group Pi, and whenever J, J' E Sf with J < J',
there is an injective homomorphism cp j y : Pi -+ PJp such that Vii = id and
(pJj', = Wjty, o cojpp when J < J' < P. (This is the data for a "complex of
groups" in the sense of [ H] or more precisely a "simple complex of groups "
in the sense of [CD21.)

For a natural number m, let S,f denote the subposet of Sf consisting of all J
with Card (J) < m.
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Proposition 4.1. (Tits [T, Proposition 2]). Suppose that C(G, B, (P;)1 1)
is a building of type M. Then G is the direct limit of the system of groups
{PJI J E SZ }.

The "direct limit" of a system of groups is defined in [S, p. 1]; the term
"amalgamated sum" is used in [T] for this concept.
There is a converse result to Proposition 4.1. Suppose we are given a simple
complex of groups (PJ) over S3. (In other words, a system of groups as in
the paragraph preceding Proposition 4.1, where the data is only specified for
those J with Card (J) < 3.) For any subset K of I, let GK denote the direct
limit of the system of groups {PJIJ E S2 fl K}. Set B = P0i Pi = P{t} and
G=GI.

Theorem 4.2. (Tits [T, Theorem 1]). With notation as above, suppose
that for all J E S3 - {0}, C(PJ, B, (P,),EJ) is a building of type M. Then
C(G, B, (PP)iEI) is a building of type M.

5. Graph products

Let r be a simplicial graph with vertex set I. Define a Coxeter matrix M(=
M(r)) by setting

11; if i = j
m;, = 2; if {i, j } spans an edge of r

oo; otherwise.

Let W be the associated right-angled Coxeter group. Note that a subset J of
I is spherical if and only if any two elements of J span and edge; furthermore,
if this is the case, then Wj is the direct product of JJI copies of the cyclic
group of order two.
Suppose we are given a family of groups (P2)iE1. For each J E Sf, let Pj
denote the direct product

PJ=rl P,
jEJ

(P0 = {1}). If J < J' E Sf, then cojj' : Pj Py is the natural inclusion.
The direct limit G of {PjI J E S2 } is called the graph product of the (R);EI
(with respect to r).
Alternatively, G could have been defined as the quotient of the free product
of the (P{)iEJ by the normal subgroup generated by all commutators of the
form [gi, g,], where g. E P;, g, E P, and mil = 2.
Notice that for all J E Sf, J # 0, C(PJ, {1}, (P,),EJ) is a building of type MJ
(it is a direct product of the rank one buildings C(P1, {1}, P,) as in Example
3.3). Hence, Tits' Theorem 4.2 implies the following.
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Theorem 5.1. Let G be a graph product of groups (Pi)iE,, as above. Then
C(G, {1}, is a building of type M.

Actually, it is not difficult to give a direct proof of this, without invoking Tits'
Theorem, by producing the W-valued distance function b : G x G -+ W. It
is clear that any g in G can be written in the form g = gi1 . g,,, where
gi, E Pi, -111 and where i = i, ik is a reduced word in I* (with respect to
M). Moreover, if g' = gii gi, is another such representation, then g = g'
if and only if we can get from one representation to the other by a sequence
of replacements of the form, gig; -4 g3gi where mi; = 2. In particular, the
words i = i1 ik and i' = ii ik must have the same image in W. If
9 = gi, gik, then define 6(1, g) = s(i) and then extend this to G x G by
8(g, g') = 8(1, g-1g'). This 8 has the desired properties.

6. Apartments and retractions
Suppose that C is a building of type M. Let W be the abstract Coxeter
complex of W (defined in Example 3.1). A W-isometry of W into C is a map
a : W -* C which preserves W-distances, i.e.,

Sc(a(w), a(w)) = 8w(w, w')

for all w, w' E W. (Here 8C is the W-valued distance function on C and
aw(w, w') =
An apartment in C is an isometric image a(W) of W in C.
The set of W-isometries of W with itself is bijective with W. Indeed, given
w E W, there is a unique isometry a,,, : W -4 W sending 1 to w. It is
defined by a,,, (w') = ww'. It follows that an isometry a : W -* C is uniquely
determined by its image A = a(W) together with a chamber c = a(1).
Fix an apartment A in C and a chamber c in A. Define a map

Pc,A : C -+ A,

called the retraction of C onto A with center c, as follows. Let A = a(W)
with a(1) = c. Set pc,A(c') = a(8(c, c')).
The following lemma is an easy exercise which we leave for the reader.

Lemma 6.1. The map pc,A : C * A is a morphism of chamber systems.

In other words, if 8(c', c") = si, then either p(c) = p(c") or b(p(c'), p(c")) = si,
where p = pc,A.

Corollary 6.2. Let p = pc,A. If 8(c', c") E Wj, then S(p(c'), p(c")) E W.

Lemma 6.3. Let P = PC,A : C A. If A' is another apartment containing
c, then PAA' : A' - A is a W-isometry (i.e., fAA, is an isomorphism).

Proof Let a : W A and /3 : W -* A' be W-isometries such that a(1) _
c = /3(1). If c' E A', then p(c) = a(8(c, c')) and /3(8(c, c')) = c'. Therefore,
p(c') = a o 0-1(c'), i.e., PI A' = a o,3-1
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II. Geometric properties of buildings

7. CAT (0) spaces

A metric space (X, d) is a geodesic space if any two points x and y can be
joined by a path of length d(x, y); such a path, parametrized by arc length,
is a geodesic. A triangle in a geodesic space X is a configuration of three
points and three geodesic segments connecting them. For each real number
e, let M? denote the plane of curvature c. (If e > 0, Mf = S,, the sphere
of radius 1//; if e = 0, Mo = 1E2, the Euclidean plane; if e < 0, ME = IV,
the hyperbolic plane of curvature e.) Let T be a triangle in X and T* a
"comparison triangle" in M,'. This means that the edge lengths of T* are the
same as those of T. (If e > 0, assume that the perimeter of T is < 2ir//.)
Denote the canonical isometry T -3 T* by p -4 p*. Suppose x, y, z are the
vertices of T and that, for t E [0, 1], pt is the point on the edge from x to y of
distance td(x, y) from x. The CAT(e)-inequality is the inequality,

d(z,pt) <- d*(z*,p*),

where d* denotes distance in M,. The space X is CAT(e) if this inequality
holds for all triangles T (of perimeter < 27r/ f when e > 0) and for all
t E [0, 1].
If x, y, z are points in 1E2, then a simple argument ([Bro, p. 153]) shows

d2(z,pt) = (1 - t)d2(z,x) + td2(z,y) - t(1 - t)d2(x,y)

Here d denotes Euclidean distance and d2(x, y) = d(x, y)2.
We return to the situation where T is a triangle in X with vertices x, y, z.
Since the edge lengths of T are the same as those in the Euclidean compar-
ison triangle, the equation in the previous paragraph immediately yields the
following well-known lemma.

Lemma 7.1. With notation as above, the CAT(O) -inequality for the triangle
T in X is equivalent to

d2(z,pt) < (1 - t)d2(z,x) + td2(z,y) - t(1 - t)d2(x,y)

A piecewise Euclidean polyhedron X is a space formed by gluing together
convex cells in Euclidean space via isometries of their faces. Each cell in
X can then be identified with a Euclidean cell, well-defined up to isometry.
It follows that arc-length makes sense in X. Thus, X has a natural "path
metric": d(x, y) is the infimum of the lengths of all piecewise linear paths
joining x to y. One says that X has finitely many shapes of cells if there
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are only a finite number of isometry types of cells in the given cell structure
on X. If X has finitely many shapes of cells, then the path metric gives it
the structure of a complete geodesic space ([Bri]). We are interested in the
question of when such piecewise Euclidean polyhedra are CAT(0).
It also makes sense to speak of geodesically convex cells in S". This leads to
the analogous notion of a piecewise spherical polyhedron. Piecewise spherical
polyhedra play a distinguished role in this theory since they arise naturally
as "links" of cells in piecewise constant curvature polyhedra. A basic result is
that if X is a piecewise constant curvature polyhedron (of curvature e), then
X satisfies CAT(e) locally if and only if the link of each cell is CAT(1). (See
[Bri] or Ballman's article in [GH, Ch. 10].)

8. The geometric realization of a poset

Let P be a poset. Its derived complex, denoted by P, is the poset of finite
chains in P (partially ordered by inclusion). It is an abstract simplicial com-
plex: the vertex set is P, the simplices are the elements of P. The geometric
realization of this simplicial complex is denoted by geom(P) and called the
geometric realization of P.
There are two different decompositions of geom(P) into closed subspaces.
Both decompositions are indexed by P. Given p E P, let geom(P)<p (respec-
tively, geom(P),,) denote the union of all simplices with maximal vertex p
(respectively, minimal vertex p). The subcomplex geom(P)<p is a face, while
geom(P),,o is a coface. Thus, the poset of faces of geom(P) (partially or-
dered by inclusion) is naturally identified with P, while the poset of cofaces
is identified with POP (where POP denotes the same set as P but with the order
relations reversed).

9. The geometric realization of the Coxeter complex

Let I, M, W and Sf be as in §2 and W be the abstract Coxeter complex of
Example 3.1. Consider the poset

WSf = II W/WJ,
JEST

where the partial ordering is inclusion of cosets. We remark that WSf can
be identified with the poset of all residues in W of spherical type (where a
residue of type 0 is interpreted to be a chamber).
The geometric realization of W, denoted JWI, is defined to be the geometric
realization of the poset WSf, i.e.,

JWI = geom(WSf).



116 M. W. Davis

Also, we will use the notation,

Ill = geom(Sf).

Subscripts will be used to denote the cofaces of I W I and 111. Thus, if J E Sf
and wW,, E WSf, then

1l., = geom(Sf)>i

IWIwwj = geom(WS')>ww .

The maximal cofaces (when J = 0) correspond to chambers in W. If w E W
is such a chamber, then the corresponding maximal coface is also called a
chamber and will be denoted simply by 1wl (instead of IWI,,w0). Similarly,
we will write IwIj instead of IWI,,,w .
Our next goal is to show that the faces of IWI are cells.
First suppose that W is finite. Then it has a representation as an orthogonal
reflection group on R", n = Card (I). The reflection hyperplanes divide 18^
into simplicial cones each of which is a fundamental domain for the W-action.
Two of these simplicial cones (which are images of each other under the
antipodal map) are bounded by the hyperplanes corresponding to the si, i E I.
Choose one and call it the fundamental simplicial cone. (See [B, Ch. V
§4].) For each A E (0, oo)' there is a unique point p,, in the interior of the
fundamental simplicial cone so that the distance from p,, to the hyperplane
fixed by s; is Ai. The convex hull of the W-orbit of p,, is a convex cell in 1ll;"
called a Coxeter cell of type W and denoted by Pw (.\). The intersection of
Pw(A) with a fundamental simplicial cone is also a convex cell in 1R" called a
Coxeter block and denoted by Bw(A).
For example, if W is a direct product of cyclic groups of order two, then
Pw(.\) is the Cartesian product of intervals ([-at, \i])iEI, while Bw(7) is the
Cartesian product of ([0, A])1.
The next lemma is an easy exercise. A proof is found in [CD3, Lemma 2.1.3].

Lemma 9.1. Suppose W is finite. The vertex set of Pw(.) is Wp,, (the
W-orbit of pa). Let 0 : W -* Wp,, denote the bijection w - wpa. Given
a subset V of W, 9(V) is the vertex set of a face of Pw(A) if and only if
V = wW,, for some wW,, E WSf. Thus, 0 induces an isomorphism from
WSf to the poset of faces of Pw(A).

The map 0 of Lemma 9.1 induces a simplicial isomorphism from IWI to
the barycentric subdivision of Pw(A) taking faces to faces. Moreover, the
restriction of this identification to 1 yields an identification of 1 with Bw(A).
Thus, when W is finite each chamber of IWI is identified with a Coxeter block.
We also note that the face of Pw (A) corresponding to wWj is isometric to
Pw,, (A,,) where A., denotes the image of A under the projection (0, oo)' -a
(0, oo)J.



Buildings are CAT (0) 117

We return to the general situation where W may be infinite. As before, choose
A E (0, oo)'. By Lemma 9.1 we can identify the face of IW I corresponding
to wWj with the Coxeter cell Pw, (Ai). Moreover, this identification is well-
defined up to an element of Wj (which acts by isometries on Pw, (As)). Hence,
we have given I W I the structure of a piecewise Euclidean cell complex in which
each cell is isometric to a Coxeter cell.
We make a few observations.
(1) The natural W-action on IWI is by isometries.
(2) Any chamber Iwl is a fundamental domain for the W-action.
(3) The projection WSf -4 Sf induces a projection IWI -+ Ill which is
constant on W-orbits. The induced map IWI/W -4 Ill is a homeomorphism
(4) If I is finite (a mild assumption), then 1 is a finite complex and IW I has
only finitely many shapes of cells.
We henceforth assume that I is finite.

Theorem 9.2. (Moussong [M]). For any finitely generated Coxeter group
W, the space IWI, with the piecewise Euclidean structure defined above, is a
complete CAT(0) geodesic space.

Remark 9.3. The choice of A E (0, oo)' plays no role in Moussong's Theorem
(or anywhere else). Henceforth, we normalize the situation by setting A, = 1,
for all i E I.

Remark 9.4. Suppose W is right-angled. Then (with the above normaliza-
tion) each Coxeter cell is a regular Euclidean cube of edge length 2. In this
situation IW I is a cubical complex and Theorem 9.2 was proved by Gromov,
[G, p. 122], by a relatively easy argument.

10. The geometric realization of a building

Let C be a building of type M. The quickest way to define the geometric
realization of C is as follows. Let C denote the poset of all J-residues in
C with J E Sf. Then ICI is defined to be the geometric realization of C.
For each c E C let Ici denote the maximal coface geom(C),,. The map
Type: C -3 S1 which associates to each residue its type induces a map of
geometric realizations ICI -4 111. Moreover, the restriction of this map to
each chamber Icl is a homeomorphism. Since we showed in §9 how to put a
piecewise Euclidean structure on Ill (a union of Coxeter blocks), this defines
a piecewise Euclidean structure on ICI.
We shall now describe an alternate approach to this definition which is prob-
ably more illuminating. Let X be a space and (Xi)iE1 a family of closed
subspaces. For each x E X, set J(x) _ {j E IIx E X;}. Define an equiv-
alence relation - on C x X by (c, x) (c', x') if and only if x = x' and
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6(c, c') E WJ(x). The X-realization of C, denoted by X (C), is defined to be
the quotient space (C x X)/ -. (Here C has the discrete topology.)
If c is a chamber in C, then X (c) denotes the image of c x X in X (C). If A
is an apartment, then

X (A) = U X (c)
cEA

(AxX)/

Let p = Pc,A : C - A be the retraction onto A with center c. By Corollary
6.2, the map p x id : C x X -* A x X is compatible with the equivalence
relation -. Hence, there is an induced map p : X (C) -3 X (A). The map
is a retraction in the usual topological sense.
We shall apply this construction in the following two special cases.

Case 1. X = 111, the geometric realization of Sf, and for each i E I, I 1 li =
111{i}, the coface corresponding to {i}.

Case 2. W is finite (so that it acts as an orthogonal reflection group on
1[8", n = Card (I)) and X = A, the spherical (n - 1)-simplex which is the
intersection the fundamental simplicial cone with Sn-1. The subspace Di is
the codimension-one face of A which is the intersection of the hyperplane
corresponding to si and A.

In Case 1, we will use the notation ICI for Ill(C) and call it the geometric
realization of C. It is a simple matter to check that this agrees with the
definition in the initial paragraph of this section. Similarly, Icl = 111(c) and
IAA = I11(A).

In Case 2 (where C is a building of spherical type), 0(C) will be called the
spherical realization of C.
As explained in §9, Ill has a natural piecewise Euclidean cell structure: the
cells are Coxeter blocks. Thus,

U BW,.
JEST

Here the Coxeter block B1.1.J is identified with the face of Ill corresponding to
J, i.e., with geom(Sf)<J. This induces a piecewise Euclidean cell structure
(and a resulting path metric) on ICI. Thus, if A is an apartment of C, then
JAI is isometric to IWI.
Similarly, if C is of spherical type, then 0(C) inherits a piecewise spherical
simplicial structure from the spherical simplex A. If A is an apartment, then
0(A) is isometric to the round sphere Sn-1. These spherical realizations of
buildings of spherical type arise naturally as links of certain cells in ICI for a
general building C.
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Example 10.1. (A continuation of Example 3.2). Suppose that C is a
building of rank one. Then ill = [0, 1]. Hence, ICI = (C x [0, 1])/ - where
(c, 0) ' (c', 0) for all c, c' E C, i.e., I Cl is the cone on C. Similarly , A(C) = C
(with the discrete topology).

Example 10.2. (A continuation of Example 3.3). Suppose that C = C1 x
x Ck is a direct product of buildings. We use the notation of Example

3.3 Let Ili1 denote the geometric realization of Sf (Mt),1 < t < k, and let
1 denote the geometric realization of Sf (M). Then 1 = 11, x . . . x Ilkl,

where the Cartesian product has the product piecewise Euclidean structure
and the product metric. It follows that I CI = IC1I x . . . x ICkI. Similarly, if
C is of spherical type, then 0(C) is the "orthogonal join" (defined in [CD1,
p. 1001]) of the A(Ci).
In particular suppose that each Ci is a rank one building. Then W is the
direct product of k copies of the cyclic group of order two; ICI is a Cartesian
product of k cones; each chamber in ICI is isometric to the k-cube [0, 1] k and
each apartment is isometric to [-1,1]k. Similarly, 0(C) is the orthogonal
join of the Ci; each chamber is an "all right" spherical (k - 1)-simplex and
each apartment is isometric to Sk-1, triangulated as the boundary of a k-
dimensional octahedron.

Remark 10.3. The usual definition of the geometric realization of a building
C, say in [Bro] or [R], is as X (C) where X is a simplex of dimension Card (I) -
1 and (Xi)iEJ is the set of codimension-one faces. If C is spherical, then
X(C) = 0(C), and if C is irreducible and of affine type, then X(C) = ICI.
But, if, for example, C is the direct product of two buildings of affine type,
then X(C) is not a Cartesian product (it is a join). In [R, p. 184], Ronan
comments to the effect that in the general case, the geometric realization of
a building should be defined as above.

Remark 10.4. Another possibility is to take X and (Xi)iEI to be a "Bestvina
complex" as in [Bes] or [HM]. This means that X is a CW-complex, each Xi
is a subcomplex and that if, for J a subset of I, we set

XJ=nx3
1EJ

(and X0 = X), then XJ is nonempty and acyclic if and only if J E Sf.
Furthermore, X is required to have the smallest possible dimension among
all such complexes with this property. The argument in [D] then shows that
X (C) is acyclic (and contractible if X is contractible). In the case where
C admits a chamber-transitive automorphism group G, X (C) can be used to
determine information about the cohomological dimension (or virtual coho-
mological dimension) of G.
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11. The main theorem and some of its consequences

Theorem 11.1. The geometric realization of any building is a complete,
CAT(0) geodesic space.

In the case where the building C is irreducible and of affine type, this result
is well-known. A proof can be found in [Bro, Ch. VI §3]. Our proof follows
the argument given there.
Suppose p = pc,A : C -* A is the retraction onto A with center c. Its
geometric realization p : ICI -+ IAI (defined in §10) takes each chamber of
ICI isometrically onto a chamber of Al.IHence, p maps a geodesic segment
in ICI to a piecewise geodesic segment in IAI of the same length. From this
observation we conclude the following.

Lemma 11.2. The retraction p : ICI -+ IAI is distance decreasing, i.e., for
Iall x, y E Cl,

d1A1 (p(x), p(y)) <_ dlcl (x, y),

where d1A1 and dlcl denote distance in IAI and ICI, respectively. In particular,
if x, y E IAI, then dIAI(x, y) = dlcl(x, y)

Lemma 11.3. There is a unique geodesic between any two points in ICI.

Proof One of the basic facts about buildings is any two chambers are con-
tained in a common apartment ([R, Theorem 3.11, p. 34]). This implies
that, given x, y E ICI, there is an apartment A such that x, y E Al.I(Choose
chambers c, c' E C so that x E I cl , y E Ic'I and an apartment A containing
c and c'; then x, y E IAI.) A basic fact about CAT(0) spaces is that any
two points are connected by a unique geodesic segment. Since Al Iis CAT(0)
(Moussong's Theorem), there is a unique geodesic segment in Al Ifrom x to
y. Let y : [0, d] -> Al Ibe a parametrization of this segment by arc length,
where d = d(x, y). By the last sentence of the previous lemma, y is also a
geodesic in ICI. Let y' : [0, d] -4 ICI be another geodesic from x to y. If
p : ICI - Al Iis the geometric realization of any retraction onto A, then go ry'
is a geodesic in IAI from x to y (since it is a piecewise geodesic of length d).
Hence, poy' = y. Let to = sup{tI-yI[o,t] ='Y'I[o,t]}. Suppose that to < d. Then,
for small positive values of E, y(to + E) lies in the relative interior of some co-
face IcIj, with c E A, while y'(to + E) lies in the relative interior of a different
coface Ic'I, , where Ic'Ij 0 IAI. Set p = pc,A. Since IcIj Ic'Ij, 8(c, c') ¢ W,.
Hence, ;5(-y' (to + E)) # y (to + E), a contradiction. Therefore, to = d and -y = -y'.

Lemma 11.4. Suppose p = pc,A. If x E IcI, then d(x, p(y)) = d(x, y) for all
yEICI.
Proof Choose an apartment A' so that IA'I contains both x and y. By
the previous lemma, the image of the geodesic y from x to y is contained
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in JA'I. By Lemma 6.3, PIA' : A' -a A is a W-isometry. It follows that
PIIA'I :

IA'I - JAI is an isometry. Hence, po'y is actually a geodesic (of the
same length as 'y).

Proof of Theorem 11.1 Suppose x, y, z E ICI. Fort E [0,1], let pt be the
point on the geodesic segment from x toy such that d(x, pt) = td(x, y). By
Lemma 7.1, to prove that SCI is CAT(0) we must show that

d2(z, pt) < (1 - t)d2(z, x) + td(z, y) - t(1 - t)d2(x, y).

Choose an apartment A so that x, y E JAI. Since the geodesic segment from
x to y lies in JAI,pt E JAI. Hence, we can choose a chamber c in A so that
pt E Jcl. Let p = PC,A. By Lemma 11.4, d(z, pt) = d(p(z), pt). Hence,

d2(z, pt) = d2(P(z), pt)
< (1 - t)d2(p(z),x) + td2(p(z),y) - t(1 - t)d2(x,y)

< (1 - t)d2(z,x) + td2(z,y) - t(1 - t)d2(x,y).

The first inequality holds since p(z), x, y all lie in JAI and since JAI is CAT(0).
The second inequality follows from Lemma 11.2. Therefore, ICI is CAT(0).

Since CAT (0) spaces are contractible (via geodesic contraction), we have the
following corollary.

Corollary 11.5. ICI is contractible.

As mentioned previously (in Remark 10.4) this can also be proved as in [D].
Suppose, for the moment, that C is spherical. Then ICI has a distinguished
vertex v, namely the coface ICIw,(= IclI for any c E C). The link of v in C is
A(C). Since the link of a vertex in a CAT(0) space is CAT(1) ([G, p. 120]),
this gives the following corollary.

Corollary 11.6. Suppose C is spherical, then O(C) is CAT(1).

Of course, one could also give a direct argument for this by proving the
analogs of Lemmas 11.2 and 11.3 for A(C) (in the case of 11.3 one shows the
uniqueness of geodesics only in the case where the endpoints are of distance
less than 7r).

Corollary 11.7. (Meier [Mei]) With notation as in §5, let G be a graph prod-
uct of groups (R,)jEI and let C be the building C(G, {1}, (F );EI) (cf. Theorem
5.1). Then ICI is CAT(0).

Remark 11.8. Since the Coxeter block associated to a direct product of
cyclic groups of order two is a Euclidean cube, ICI is a cubical complex. In the
proof of Theorem B in [Mei], in the case of graph products, the complex ICI
is defined (without mentioning buildings) and proved to be CAT(0). There
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is a simple proof of this by induction on Card (I). One first notes that
for any subset J of I, JC,J is a totally geodesic subcomplex of JCI, where
C, = C(G,, {I}, (P3);E,). If I is spherical, then JCS is a direct product of
cones on the Pi and hence, is CAT(O). If I is not spherical, then there exist
i,j E I with mi; = oo. Then G is the amalgamated product of GI-1i) and
GI_{;} along GI_{i,;} and JCI is a union of components each of which is a
translate of I CI_{i} l or I CI_{;} I Furthermore, the intersection of two such
components is a translate of the totally geodesic subcomplex ICI_{i,;)l. The
result follows from a gluing lemma of Gromov ([G, p. 1241 and [GH, p. 192])
and induction.

The Bruhat-Tits Fixed Point Theorem (see [Bro, p. 157]) states that if a
group of isometries of a complete, CAT(O) space has a bounded orbit, then
it has a fixed point. Applying this result to the case of a building with a
chamber-transitive automorphism group, we get the following.

Corollary 11.9. With notation as in §4, suppose that C = C(G, B, (Pj)iEI)
is a building and that H is a subgroup of G which has a bounded orbit in 10.
Then H is conjugate to a subgroup of P,, for some J E Sf.

Remark 11.10. First suppose W is finite. Then it can be represented as
a reflection group on hyperbolic n-space. Given A E (0, oo)I, one defines a
"hyperbolic Coxeter cell" P,",, (A) and a "hyperbolic Coxeter block" BI (A),
exactly as in §9. Returning to the situation where W and C are arbitrary,
given A E (0, oo)/, we get a piecewise hyperbolic structure on ICJ. Let us
denote it SCI" (A). If, for the link of each cell in the CAT(0) structure on
J W I, the length of the shortest closed geodesic is strictly greater than 27r,
then for sufficiently small values of A, IWI"(A) will be CAT(-1) (and hence,
W will be word hyperbolic). If this is the case, then the proof of Theorem 11.1
shows that ICI"(A) is also CAT(-1). In [M] Moussong determined exactly
when this holds. His condition is that for each subset J of I neither of the
following occur:
a) W, is of affine type, with Card (J) > 3,
b) W, is a direct product W,, x W,2 where both Jl and J2 are infinite.
Thus, if neither condition holds, then ICI can be given a CAT(-1) structure.
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1. Outline

For a finitely generated Coxeter group I', its virtual cohomological dimension
over a (non-zero, associative) ring R, denoted vcdRr, is finite and has been
described [8,1,11,13]. In [8], M. Davis introduced a contractible I'-simplicial
complex with finite stabilisers. The dimension of such a complex gives an
upper bound for vcdRr. In [1], M. Bestvina gave an algorithm for constructing
an R-acyclic I'-simplicial complex with finite stabilisers of dimension exactly
vcdRF, for R the integers or a prime field; he used this to exhibit a group
whose cohomological dimension over the integers is finite but strictly greater
than its cohomological dimension over the rationals. For the same rings, and
for right-angled Coxeter groups, J. Harlander and H. Meinert [13] have shown
that vcdRF is determined by the local structure of Davis' complex and that
Davis' construction can be generalised to graph products of finite groups.
Our contribution splits into three parts. Firstly, Davis' complex may be de-
fined for infinitely generated Coxeter groups (and infinite graph products of
finite groups). We determine which such groups r have finite virtual cohomo-
logical dimension over the integers, and give partial information concerning
vcdzl'. We discuss a form of Poincare duality for simplicial complexes that
are like manifolds from the point of view of R-homology, and give conditions
for a (finite-index subgroup of a) Coxeter group to be a Poincare duality
group over R. We give three classes of examples: we recover Bestvina's ex-
amples (and give more information about their cohomology); we exhibit a
group whose virtual cohomological dimension over the integers is finite but
strictly greater than its virtual cohomological dimension over any field; we
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exhibit a torsion-free rational Poincare duality group which is not an integral
Poincare duality group.
Secondly, we discuss presentations for torsion-free subgroups of low index in
right-angled Coxeter groups. In some cases (depending on the local structure
of Davis' complex) we determine the minimum number of generators for any
torsion-free normal subgroup of minimal index. Using the computer package
GAP [17] we find good presentations for one of Bestvina's examples, where
`good' means having as few generators and relations as possible.
Finally, we give an 8-generator 12-relator presentation of a group A and a
construction of A as a tower of amalgamated free products, which allows us to
describe a good CW-structure for an Eilenberg-Mac Lane space K(A,1) and
explicitly show that A has cohomological dimension three over the integers
and cohomological dimension two over the rationals. (In fact A is isomorphic
to a finite-index subgroup of a Coxeter group, but our proofs do not rely on
this.) The starting point of the work contained in this paper was the desire
to see an explicit Eilenberg-Mac Lane space for an example like A.

2. Introduction

A Coxeter system (r, V) is a group r and a set of generators V for r such
that r has a presentation of the form

r= (V I (vw)m(v'w) = 1 (v, w E V)),

where m(v, v) = 1, and if v # w then m(v, w) = m(w, v) is either an integer
greater than or equal to 2, or is infinity (in which case this relation has no
significance and may be omitted). Note that we do not require that V should
be finite. The group r is called a Coxeter group, and in the special case when
each m(v, w) is either 1, 2 or oo, IF is called a right-angled Coxeter group.

Remark. Let (r, V) be a Coxeter system, and let m : V x V -+ N U loo} be
the function occurring in the Coxeter presentation for r. If W is any subset
of V and A the subgroup of r generated by W, then it may be shown that
(A, W) is a Coxeter system, with mw being the restriction of my to W x W
[5]. The function m is determined by (r, V) because m(v, w) is the order of
vw (which is half the order of the subgroup of r generated by v and w).

Definition. A graph is a 1-dimensional simplicial complex (i.e., our graphs
contain no loops or multiple edges). A labelled graph is a graph with a function
from its edge set to a set of `labels'. A morphism of graphs is a simplicial map
which does not collapse any edges. A morphism of labelled graphs is a graph
morphism such that the image of each edge is an edge having the same label.
A colouring of a graph X is a function from its vertex set to a set of `colours'
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such that the two ends of any edge have different images. Colourings of a
graph X with colour set C are in 1-1-correspondence with graph morphisms
from X to the complete graph with vertex set C.

Definition. For a Coxeter system (F, V), the simplicial complex K(F, V) is
defined to have as n-simplices the (n+ 1)-element subsets of V that generate
finite subgroups of r. Note that our K(r, v) is Davis' Ko(F, V) in [8]. The
graph Kl (F, V) is by definition the 1-skeleton of this complex. The graph
Kl (P, V) has a labelling with labels the integers greater than or equal to 2,
which takes the edge {v, w} to m(v, w). This labelled graph is different from,
but carries the same information as, the Coxeter diagram. The labelled graph
K' (F, V) determines the Coxeter system (F, V) up to isomorphism, and any
graph labelled by the integers greater than or equal to 2 may arise in this
way. A morphism of labelled graphs from Kl (I', v) to K' (0, W) gives rise
to a group homomorphism from r to A.

Call a subgroup of r special if it is generated by a (possibly empty) subset
of V. Thus the simplices of K(F,V) are in bijective correspondence with
the non-trivial finite special subgroups of r. Let D(r, V) be the simplicial
complex associated to the poset of (left) cosets of finite special subgroups
of r. By construction r acts on D, and the stabiliser of each simplex is
conjugate to a finite special subgroup of r. In [8], Davis showed that D(f, V)
is contractible if V is finite, and the general case follows easily (for example
because any cycle (resp. based loop) in D(I', v) is contained in a subcomplex
isomorphic to D((V'), V') for some finite subset V' of V, so a fortiori bounds
(resp. bounds a disc) in D(I', V)). Note that K(r, V) is finite-dimensional if
and only if D(F, V) is, and in this case the dimension of D(I', V) is one more
than the dimension of K(I', V).
A graph product r of finite groups in the sense of E. R. Green [12] is the
quotient of the free product of a family {G I v E V} of finite groups by the
normal subgroup generated by the sets {[g, h] I g E G,,, h E G,,,} for some
pairs v # w of elements of V. A graph product of groups of order two is a
right-angled Coxeter group. If a special subgroup of a graph product is defined
to be a subgroup generated by some subset of the given family of finite groups,
then the above definitions of K(I', V) and D(r, V) go through unchanged.
In [13] it is proved that for a graph product of finite groups, D(I', V) is
contractible. (As in [8] only the case when V is finite is considered, but the
general case follows easily.) The group algebra for a graph product Zr is
isomorphic to the quotient of the ring coproduct of the ZG by relations that
ensure that the pairs ZG and ZG,, generate their tensor product whenever
G and G. commute. Theorem 4.1 of [11] is a result for algebras formed
in this way which in the case of the group algebra of a graph product is
equivalent to the acyclicity of D(I', V).
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3. Virtual cohomology of Coxeter groups

Henceforth we shall make use of the abbreviations vcd and cd to denote
the phrases `virtual cohomological dimension'and `cohomological dimension',
respectively, and when no ring is specified, these dimensions are understood
to be over the ring of integers.

Theorem 1. The Coxeter group r has finite vcd if and only if there is a
labelled graph morphism from KI (F, v) to some finite labelled graph.

Proof The complex K = K(r, V) has simplices of arbitrarily large dimen-
sion if and only if V contains arbitrarily large finite subsets generating finite
subgroups of r. In this case F cannot have a torsion-free subgroup of finite
index, and there can be no graph morphism from K' to any finite graph.
Thus we may assume that K and hence also D are finite-dimensional. Any
torsion-free subgroup of r acts freely on D, and so it remains to show that if
D is finite-dimensional then there is a labelled graph morphism from KI to
a finite graph if and only if r has a finite-index torsion-free subgroup.
As remarked above, a morphism from K' (F, V) to K' (A, W) gives rise to a
group homomorphism from r to A in an obvious way. Moreover, if v, v' have
product of order m(v, v'), then so do their images in W, because the edge
{v, v'} and its image in K'(0, W) are both labelled by m(v, v'). Now if V' is
a finite subset of V generating a finite subgroup of r, and W' is its image in
W, then it follows that (V') and (W') have identical Coxeter presentations, so
are isomorphic. Thus a morphism from K' (r, V) to KI (A, W) gives rise to a
homomorphism from r to A which is injective on every finite special subgroup
of r. Now suppose that there is a morphism from K' (r, v) to K' (A, W) for
some finite W. The finitely generated Coxeter group A has a finite-index
torsion-free subgroup AI, so let r, be the inverse image of this subgroup in
r. Since r, intersects any conjugate of any finite special subgroup trivially,
it follows that r, acts freely on D(P, V) and is torsion-free.
Conversely, if IF has a finite-index torsion-free subgroup F,, which we may
assume to be normal, let Q be the quotient r/I'I, and build a labelled graph
X with vertices the elements of Q of order two and all possible edges between
them. Label the edge {q, q'} by the order of qq'. Now the homomorphism from
r onto Q induces a simplicial map from K' (I', V) to X which is a labelled
graph morphism because if vv' has finite order then its image in Q has the
same order.

Remarks. 1) If we are interested only in right-angled Coxeter groups then
all the edges of KI have the same label, 2, and we may replace the condition
that there is a morphism from K' to a finite labelled graph by the equivalent
condition that KI admits a finite colouring. The above proof can be simplified
slightly in this case, because the right-angled Coxeter group corresponding
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to a finite complete graph is a finite direct product of cyclic groups of order
two.
2) An easy modification of the proof of Theorem 1 shows that a graph product
IF of finite groups has finite vcd if and only if there are only finitely many
isomorphism types among the vertex groups G,,, and the graph K' (r, V)
admits a finite colouring.
3) Let (F, V) be the Coxeter system corresponding to the complete graph
on an infinite set, where each edge is labelled n for some fixed n > 3. Then
K(F, v) is one-dimensional (since the Coxeter group on three generators such
that the product of any two has order n is infinite), r has an action on a
2-dimensional contractible complex with stabilisers of orders 1, 2, and 2n,
but by the above theorem IF does not have finite vcd. Similarly, if we take a
triangle-free graph which cannot be finitely coloured, then the corresponding
right-angled Coxeter group acts on a contractible 2-dimensional complex with
stabilisers of orders 1, 2, and 4, but does not have finite vcd. In contrast, any
group acting on a tree with finite stabilisers of bounded order has finite vcd;
see for example [10], Theorem 1.7.4.

If a Coxeter group P has finite vcd then D(F, v) is finite-dimensional and the
dimension of D gives an upper bound for vcdF. Parts a) and c) of the follow-
ing theorem determine when this upper bound is attained. The information
concerning the right F-module structure on various cohomology groups will
be used only during the construction (in example 3 of the next section) of
a torsion-free rational Poincare duality group that is not a Poincare duality
group over the integers. To avoid cluttering the statement unnecessarily we
first give some definitions that are used in it.

Definition. For a Coxeter system (F, V) and an abelian group A, let A° de-
note the F-bimodule with underlying additive group A and F-actions given by
va = av = -a for all v E V. This does define compatible actions of [' because
each of the relators in the Coxeter presentation for r has even length as a
word in V. For a F-module M, let Ma denote the underlying abelian group.
For a simplicial complex D, let C. (D) denote the simplicial chain complex
of D, let C; (D) denote the augmented simplicial chain complex (having a
- 1-simplex equal to the boundary of every 0-simplex) and let H' (D; A) de-
note the reduced cohomology of D with coefficients in A, i.e., the homology
of the cochain complex Hom(C; (D), A). All our F-modules (in particular, all
our chain complexes of IF-modules) are left modules unless otherwise stated.

Theorem 2. Let (F, V) be a Coxeter system such that r has finite vcd,
let K = K(F, V) have dimension n (which implies that vcd[' < n + 1), let
D = D([', v), let F1 be a finite-index torsion free subgroup of IF, and let A be
an abelian group containing no elements of order two. Then
a) For any F1-module M, Htt}1(I'1; M) is a quotient of a finite direct sum of
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copies of H"(K; Ma).
b) For each j, there is an isomorphism of right r-modules as follows.

H'+'Homr(C.(D),A°) = H'(K;A)0

c) The right r-module H"+1 (r; Ar) (which is isomorphic to Hn}1(r1i Art) as
a right r1-module) admits a surjective homomorphism onto Hn(K; A)°.
d) If multiplication by the order of each finite special subgroup of r induces
an isomorphism of A, then for each j the right r-modules Hj+1(r; A°) and
Hj(K;A)° are isomorphic.

Proof Let K' be the simplicial complex associated to the poset of non-trivial
finite special subgroups of r, so that K' is the barycentric subdivision of K.
Let D' be the complex associated to the poset of cosets of non-trivial finite
special subgroups of F. Then D' is a subcomplex of D, and consists of all
the simplices of D whose stabiliser is non-trivial. We obtain a short exact
sequence of chain complexes of ZIP-modules

0-3C.(D') -4 C. (D) -4 C.(D,D') -*0, (*)

such that for each n the corresponding short exact sequence of zr-modules
is split.
There is a chain complex isomorphism as shown below.

C.(D, D') = Zr ®z c+, (KI)

Topologically this is because the quotient semi-simplicial complex DID' is
isomorphic to a wedge of copies of the suspension of K', with r acting by
permuting the copies freely and transitively. More explicitly, one may identify
m-simplices of D with equivalence classes of (m + 2)-tuples (y, V0, ... , Vm),

where Vo g C_ V. are subsets of V generating finite subgroups of r, -y is
an element of r, and two such expressions (y, V0,. .. , V m ) and V .. ,

V i and the cosets y(Vo) and y'(Vo) are equal.
A map from C. (D) to ZF ®z C; 1(K') may be defined by

(0 ifV0O,
Sl y®(V11...,V.) if Vo=0,

and it may be checked that this is a surjective chain map with kernel C.(D').
The claim of part a) now follows easily. Applying Homr1( , M) to the se-
quence (*) and taking the cohomology long exact sequence for this short exact
sequence of cochain complexes, one obtains the following sequence.

H' 'Homr1(C. (D, D'), M) -3 H"+1Homr, (C. (D), M) _+ 0
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Now Ht}1Homr1(C*(D), M) = H"+1(r,; M), and there is a chain of isomor-
phisms as below.

Hi}1Homr1(C,(D, D'), M) = H"Homr1(ZF (9 C, (K'), M)

® H"Hom(C, (K'), Ma)
r/r1

(@ H" (K, Ma)
r/r,

To prove b), note that since A has no elements of order two, there are no
non-trivial r-module homomorphisms from the permutation module zr/(V')
to A' for any non-empty subset V' of V. Hence applying Homr( , A°) to
the sequence (*) one obtains an isomorphism of cochain complexes of right
r-modules

Homr(C*(D), A°) - Homr(C*(D, D'), A°).

Taking homology gives the following chain of isomorphisms.

Hi+1 Homzr(C* (D), A°) = H'+1Homzr(C*(D, D'), A°)

HiHomzP(ZF ® C; (K'), A°)

HiHomz(C; (K'), A°)

Hi (K; A)°

Now d) follows easily. Let R be the subring of Q generated by the inverses of
the orders of the finite special subgroups of F. Now HomRr(R ® C*(D), A°)
is isomorphic to Homzr(C*(D), A°), and R®C*(D) is a projective resolution
for R over RF, so d) follows from b).
For c), note that there is an equivalence of functors (defined on r-modules)
between Homr ( , AF) and Ar1). In particular, H* (F,; AF,) and
H*(F; AF) are both isomorphic to the homology of the cochain complex
Homr (C* (D), Ar).
There is a r-bimodule map ¢ from AF to A' sending a.w to (-1)'a, where
w is any element of r representable by a word of length l in the elements of
V. Consider the following commutative diagram of cochain complexes, where
the vertical maps are induced by 0:

Homr(C*(D), Ar) -* Homr(C*(D, D'), Ar)

4-

Homr(C*(D), A°) --> Homr(C*(D, D'), A°).

The horizontal maps are surjective because Ci(D, D') is a direct summand of
Ci(D) for each i, and the lower horizontal map is an isomorphism as in the
proof of b). The right-hand vertical map is surjective because C*(D, D') is
ZF-free, and hence the left-hand vertical map is surjective.
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Since each of the cochain complexes is trivial in degrees greater than n + 1,
one obtains a surjection

H"+'Homr(C,(D), AF) --* H"+1Homr(C,(D), A°),

and hence by b) a surjection of right I'-modules

H"+1 (r1; Arl) -* H" (K; A)°.

Remark. Parts b) and d) of Theorem 2 do not generalise easily to graph
products of finite groups having finite virtual cohomological dimension, and
we have no application for these statements except in the Coxeter group case.
We outline the generalisation of a) and a weaker version of c) below.

The statement and proof of part a) carry over verbatim, and there is a gen-
eralisation of part c). If F is a graph product of finite groups with 1 distinct
isomorphism types of vertex group such that the graph K' (I', V) can be
m-coloured, then the graph product version of Theorem 1 implies that I' ad-
mits a finite quotient G = G, x ... x Gk for some k < lm, where each Gi
is isomorphic to a vertex group of IF and each finite special subgroup of IF is
mapped injectively to G with image of the form Ci(l) x x Gi(s) for some
subset {i(1), ... i(j)} of {1, ... , k}. Now for 1 < i < k, let xi E ZG be the
sum of all the elements of Gi, and let Z be the Zr-module defined as the
quotient of ZG by the ideal generated by the xi. This Z is the appropriate
generalisation of Z° to the case of a graph product, because it is a quotient
of Z of finite Z-rank and contains no non-zero element fixed by any vertex
group. To see this, note that

Z - ZG1/(xl) ® ... ® ZGk/(xk),

where I acts on the ith factor via its quotient Gi. Each factor is Z-free,
and the action of Gi on ZGi/(xi) has no fixed points, because for example
C ® (ZGi/(xi)) does not contain the trivial CGi-module.
The arguments used in the proof of Theorem 2 may be adapted to prove a
statement like that of part b) for the module Z, namely that for any j,

H'+1Homr(C.(D), Z) = H' (K; Z0).

From this it may be deduced that if 1 is a torsion-free finite-index subgroup
of F, then H"+' (rl; Zr,) admits H'(K; ZQ) as a quotient. A similar result
could then be deduced for any torsion-free abelian group A. A similar result
could also be proved for A an lFp-vector space, for p a prime not dividing the
order of any of the vertex groups, by using the fact that IFpG is semisimple
to deduce that 1Fp 0 Z has no fixed points for the action of any Gi.
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Corollary 3. If (IF, V) is a finite Coxeter system such that the topologi-
cal realisation I KI of K = K(r, v) is the closure of a subspace which is a
connected n-manifold, then for any finite-index torsion-free subgroup r1 of r,

Hn+1(r1i Zr1) N Hn(K; Z)

Proof We shall apply the condition on JKJ in the following equivalent form:
Every simplex of the barycentric subdivision K' of K is contained in an
n-simplex, and any two n-simplices of K' may be joined by a path consisting
of alternate n-simplices and (n - 1)-simplices, each (n - 1)-simplex being a
face of its two neighbours in the path and of no other n-simplex. It suffices
to show that under this hypothesis, Hn+1(r'1i Zr'1) is a cyclic group, because
by Theorem 2 it admits Hn(K; Z) as a quotient and has the same exponent
as Hn(K; Z).
Recall the description of the m-simplices of D = D(r,V) as (m+2)-tuples as
in the proof of Theorem 2. The boundary of the simplex a = (y, Vo, ... ,
is given by

m

d(a) = E(-1)4(-y, VOf ... , Vi-1) Vy+17 ... , V,n),
£=0

and the action of r by

7a=(7'7,Vo,...,Vn).

The stabiliser of a is y(V0) y-1. In the case when m = n + 1, V must be a
subset of V of cardinality i, and a is therefore in a free F-orbit. For a an
(n + 1)-simplex, define f, E Homr (Cn+l (D), zr) by the equations

ff(a,) -y' if a' = y'a for some ry' E zr,

0 otherwise.

The f, form a Z-basis for Homr (Cn+1(D), Zr'), so it suffices to show that for
each or and a', f, ± f,, is a coboundary.
From now on we shall fix or = (y, Vs,. .. , Vn+1), and show that is a
coboundary for various choices of a'. If

O= (y, VO,..., Vi-1, V', V+1,..., Vn+1)

for some i > 0, let T be the n-simplex (y, VO, ... , Vi-1) V+1, ... , Vn+1) There
are exactly two i-element subsets of V}1 containing V-1, so a and a' are the
only (n + 1)-simplices of D having r as a face. Defining fr in the same way
as f, and f,, (which we can do because T is in a free r'-orbit), we see that
the coboundary of fT is (-1)`(f, + f,,).
If a' = (y, Wo,... , Wn}1), take a path in K', of the form guaranteed by the
hypothesis, joining the simplices (V1i ... , Vn+1) and (W1,..., Wn+1), and use
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this to make a similar path of (n + 1)- and n-simplices between or and a',
and use induction on the length of this path to reduce to the case considered
above.
It will suffice now to consider the case when a' = ('yy', Vo, ... , By
induction on the length of y' as a word in V, it suffices to consider the case
when y' = v. Using the cases done above and the fact that {v} is a vertex
of some n-simplex of K', we may assume that V, = {v}. Now the n-simplex
T = (y, V,, ... , Vn+,) of D is a face of only a and a'. The simplex r has
stabiliser in r the subgroup y(v)y-1, so we may define

9T(T) _ I 'Y'-Y(1 + v)-y-' if T' = y'T,
l

0 otherwise.

It is easy to check that d(g,) = f, +f,,, using the fact that fo,(y'a) = 'Y'yvy-'.

In the same vein we have the following.

Proposition 4. If (I', V) is a finite Coxeter system such that the topological
realisation JKJ of K = K(r, v) is the closure of a subspace which is a con-
nected n-manifold, and r, is a finite-index torsion-free subgroup of r, then
the topological space JD(r, V)I/r, (which is an Eilenberg-Mac Lane space for
r,) is homeomorphic to a CW-complex with exactly one (n + 1)-cell.

Proof We shall give only a sketch. The complex D(r, v)/r, consists of copies
of the cone on K(r, v), indexed by the cosets of r, in r, where each n-simplex
not containing a cone point is a face of exactly two (n + 1)-simplices. (The
simplex (r,y, V,..... Vn+1), where V, _ {v}, is a face of (Ply, 0, Vi, . . . , Vn+1)

and (r,yv, 0, V1, . . . , Vn+1).) By hypothesis and this observation there exists
a tree whose vertices consist of all the (n + 1)-simplices of D(r, V)/r, and
whose edges are n-simplices of D(r, v)/r, which are faces of exactly two
(n + 1)-simplices. The ends of an edge of the tree are of course the two
(n + 1)-simplices containing it. The union of the (topological realisations of
the) open simplices of such a tree is homeomorphic to an open (n + 1)-cell.
The required CW-complex has n-skeleton the simplices of D(F, V) /17, not in
the tree, with a single (n + 1)-cell whose interior consists of the union of the
open simplices of the tree.

Remark. The condition on K(r,V) occurring in the statements of Corol-
lary 3 and Proposition 4 is equivalent to `K(r,V) is a pseudo-manifold' in
the sense of [151. Neither Corollary 3 nor Proposition 4 has a good analogue
for graph products, because both rely on the fact that the n-simplices of
D(r, V) in non-free r-orbits are faces of exactly two (n + 1)-simplices.

In Theorem 5 we summarize a version of Poincare duality for simplicial com-
plexes that look like manifolds from the point of view of R-homology for a
commutative ring R. Our treatment is an extension of that of J. R. Munkres
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book [15], which covers the case when R = Z. We also generalise the account
in [15] by allowing a group to act on our `manifolds'. The proofs are very
similar to those in [15] however, so we shall only sketch them here.

Definition. Let R be a commutative ring. An R-homology n-manifold is
a locally finite simplicial complex L such that the link of every i-simplex
of L has the same R-homology as an (n - i - 1)-sphere, where a sphere
of negative dimension is empty. From this definition it follows that L is
an n-dimensional complex, and that every (n - 1)-simplex of L is a face
of exactly two n-simplices. Thus (the topological realisation of) every open
(n - 1)-simplex of L has an open neighbourhood in ILI homeomorphic to a
ball in W'. Say that L is orientable if the n-simplices of L may be oriented
consistently across every (n - 1)-simplex. Call such a choice of orientations
for the n-simplices an orientation for L. If L is connected and orientable
then a choice of orientation for one of the n-simplices of L, together with the
consistency condition, determines a unique orientation for L. In particular,
a connected L has either two or zero orientations, and a simply connected L
has two.
For any locally finite simplicial complex L, the cohomology with compact
supports of L with coefficients in R, written H, *(L; R), is the cohomology of
the subcomplex of the R-valued simplicial cochains on L consisting of the
functions which vanish on all but finitely many simplices of L. (This graded
R-submodule may be defined for any L, but is a subcomplex only when L is
locally finite.)

Theorem 5. Fix a commutative ring R, and let L be a connected R-homology
n-manifold. Let r be a group acting freely and simplicially on L. If L is
orientable, let R° stand for the right RF-module upon which an element -y of
F acts as multiplication by -1 if it exchanges the two orientations of L and as
the identity if it preserves the orientations of L. If R has characteristic two,
let R° be R with the trivial right F-action. Then if either L is orientable or R
has characteristic two, there is for each i an isomorphism of right RF-modules

H,(L; R) 0 R° ?' Hn-;(L; R).

Proof The statements and proofs contained in sections 63-65 of [15] hold
for R-homology manifolds provided that all of the (co)chain complexes and
(co)homology are taken with coefficients in R. For each simplex or of L, one
defines the dual block D(Q) and its boundary exactly as in section 64 of [15].
From the point of view of R-homology, the dual block to an i-simplex of L
looks like an (n - i)-cell, and its boundary looks like the boundary of an
(n - i)-cell. Thus as in Theorem 64.1 of [15], the homology of the dual block
complex D. (L; R) is isomorphic to the R-homology of L. There is a natural
bijection between the dual blocks of L and the simplices of L. This is clearly
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preserved by the action of r. Each choice of orientation on L gives rise to
homomorphisms

V) : R) OR Ci(L; R) -> R

which behave well with respect to the boundary maps, and have the property
that for any simplex a with dual block D(a), and simplex o-', '(D(a) ®a') =
±1 if a = o-', and 0 otherwise. This allows one to identify D,,_. (L; R) with
C,*(L; R). With the diagonal action of r on D,,_i(L; R) 0 Ci(L; R), 0 is not
r-equivariant, but gives rise to a r-equivariant map

V' : Dn_i(L; R) OR Ci(L; R) -> R°,

and hence an RI'-isomorphism between (L; R) and CC (L; R) 0 R°.

Remark. The referee pointed out that the sheaf-theoretic proof of Poincare
duality in G. E. Bredon's book ([3], 207-211) also affords a proof of Theo-
rem 5.

Corollary 6. Let R be a commutative ring and let L be a contractible
R-homology n-manifold. Let r be a group and assume that r admits a free
simplicial action on L with finitely many orbits of simplices. Then IF is a
Poincare duality group of dimension n over R, with orientation module the
module R° defined in the statement of Theorem 5. The same result holds if
L is assumed only to be orientable and R-acyclic rather than contractible.

Proof The simplicial R-chain complex for L is a finite free Rr-resolution for
R, and hence r is FP over R. Since L has only finitely many F-orbits of
simplices, the cochain complexes (of right Rr-modules)

HomRr(C.(L), Rr) and CC (L; R)

are isomorphic. Hence by Theorem 5, the graded right RIP-module H* (r; RIF)
is isomorphic to R° concentrated in degree n. Thus IF satisfies condition d)
of Definition V.3.3 of [10] and is a Poincare duality group over R as claimed.

Corollary 7. Let (r, V) be a Coxeter system, and let R be a commu-
tative ring. If K(r,V) is an R-homology n-sphere (i.e., K(r,V) is an
R-homology n-manifold and H. (K(r, V); R) is isomorphic to the R-homology
of an n-sphere), then any finite-index torsion-free subgroup of r is a Poincare
duality group over R, of dimension n + 1.

Proof It suffices to show that whenever K = K(r, v) is an R-homology
n-sphere, D = D(r, v) is an R-homology (n + 1)-manifold, because then
Corollary 6 may be applied to the free action of the finite-index torsion-free
subgroup of r on D. We shall show that the link of any simplex in D is
isomorphic to either K' or a suspension (of the correct dimension) of the link
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of some simplex in K'. This implies that under the hypothesis on K, the link
of every simplex of D is an R-homology n-sphere.
Let a = (ry, V0,. .. , be an m-simplex of D, and without loss of generality
we assume that ry = 1. Then the link of or is the collection of simplices a' of
D having no vertex in common with or but such that the union of the vertex
sets of a and a' is the vertex set of some simplex of D. Thus the link of the
simplex a as above consists of those simplices ('y', U 0 , . . . , U,) of D such that
the finite subsets Uo, . . . , U,, Vo, ... , V. of V are all distinct, generate finite
subgroups of r, and are linearly ordered by inclusion, where ry' is an element
of the subgroup Fo of r generated by Vo. The link of a decomposes as a join
of pieces corresponding to posets of the three types listed below, where we
adopt the convention that the join of a complex X with an empty complex is
isomorphic to X, and spheres of dimension -1 are empty.
1) The poset of all subsets U of V such that (U) is finite and U properly
contains V,,. This is isomorphic to the poset of faces of the link in K' of any
simplex of K' of dimension IV I - 1 of the form (Vl, ... , V', ... , V,,,,), where
m' = I V,,, I and V,,, = V,,,. By the hypothesis on K, this is an R-homology
sphere of dimension n - I V 1.
2) For each i such that 0 < i < m, the poset of all subsets of V properly
containing V and properly contained in V. This is isomorphic to the poset
of faces of the boundary of a simplex with vertex set V}1 - V, so is a trian-
gulation of a sphere of dimension I V+, I- I V I- 2.
3) The poset of all cosets in Fo of proper special subgroups of (Fo, Vo). (Recall
that we defined Fo = (Vo).) This is a triangulation of a sphere of dimension
I Vo I - 1 on which the group Fo acts with each v E Vo acting as a reflection in
a hyperplane (see [5], 1.5, especially I.5H).
The link of the m-simplex a consists of a join of one piece of type 1), m pieces
of type 2), and one piece of type 3). All of these are spheres except that the
piece of type 1) is only an R-homology sphere. It follows that the link of a is
an R-homology sphere, whose dimension is equal to the sum

(n-IVmI)+1+(IVmI - IVm-,I -2)+1+...

+1+(1V2I-IV1I-2)+1+(IV1I-IVOI-2)+1+(IVOI-1)=n-m.
This sum is obtained from the fact that the dimension of the join of two
simplicial complexes is equal to the sum of their dimensions plus one, which
is correct in all cases, provided that the empty complex is deemed to have
dimension equal to -1.

Remarks. 1) Theorem 10 may also be used to prove Corollary 7.
2) A 7L-homology sphere is a generalised homology sphere in the sense of [8].
Davis shows that if (F, V) is a Coxeter group such that K(F, V) is a manifold
and a Z-homology sphere, then r acts on an acyclic manifold with finite
stabilisers (see Sections 12 and 17 of [8]).
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4. Unusual cohomological behaviour

Not every simplicial complex may be K(r, V) for some Coxeter system (F, V);
for example the 2-skeleton of a 6-simplex cannot occur. To see this, note that
any labelling of the edges of a 6-simplex by the labelling set {red, blue} that
contains no red triangle must contain a vertex incident with at least three
blue edges. Now recall that the Coxeter group corresponding to a labelled
triangle can be finite only if one of the edges has label two. Writing the
integer two in blue, and other integers in red, one sees that any 7-generator
Coxeter group with all 3-generator special subgroups finite has a 3-generator
special subgroup which commutes with a fourth member of the generating
set.
A condition equivalent to a complex K being equal to K(r, v) for some
right-angled Coxeter system (F, V) is that whenever K contains all possi-
ble edges between a finite set of vertices, this set should be the vertex set
of some simplex of K. Complexes satisfying this condition are called `full
simplicial complexes' or `flag complexes' [1], [5]. The barycentric subdivi-
sion of any complex satisfies this condition. The barycentric subdivision of
an n-dimensional complex admits a colouring with n + 1 colours, where the
barycentre & of an i-simplex or is given the colour i E {0, . . . , n}. This proves
the following (see 11.3 of [8]).

Proposition 8. The barycentric subdivision of any n-dimensional simplicial
complex is isomorphic to K(r, V) for some right-angled Coxeter system (r, V)
such that vcdr is finite.

0
We refer the reader to [14] for a statement of the universal coefficient theorem
and a calculation of the Ext-groups arising in the following examples.

Example 1 (Bestvina). (A group of finite cohomological dimension over
the integers whose rational cohomological dimension is strictly less than its
integral cohomological dimension.) Let X be the space obtained by attaching
a disc to a circle by wrapping its edge around the circle n times, so that
H, (X) = 7G/ (n) and H2 (X) = 0. Now let (r, V) be any Coxeter system such
that K(r, v) is a triangulation of X. The generating set V will be finite since
X is compact, so any such r will have finite vcd. Now if rt is a finite-index
torsion-free subgroup of r, cdr, is at most 3, and for any zr1-module M,
H3(r1j M) is a quotient of a finite sum of copies of H2(X; Me), which is in
turn isomorphic to Ext(7G/(n), Ma) by the universal coefficient theorem. In
particular, nH3(r,; M) = 0 for any M, and H3(r1i Zr1) = Ext(Z/(n), Z) ?'
Z/(n) by Corollary 3. Note that the methods used by Bestvina [1] and by
Harlander and Meinert [13] seem to show only that H3(rt; zr1) contains
elements of order p for each prime p dividing n, whereas our argument gives
elements of order exactly n.
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Example 2. (A group whose cohomological dimension over the integers is
finite but strictly greater than its cohomological dimension over any field.)
Let X be a 2-dimensional CW-complex with Hl (X) N Q and H2(X) = 0,
for example X could be an Eilenberg-Mac Lane space K(Q, 1) built from a
sequence C1, C2, ... of cylinders, where the end of the ith cylinder is attached
to the start of the (i + 1)st cylinder by a map of degree i. Now let (r, V)
be a Coxeter system such that K(r, V) is a 2-dimensional simplicial complex
homotopy equivalent to X, and r has finite vcd. We shall show that vcdr = 3,
and that for any field F, vcdFr = 2. Let rt be a finite-index torsion-free
subgroup of r. Then cdrl is at most 3, and for any M, H3(rt; M) is a
quotient of a finite sum of copies of H2(X; Ma) = Ext(Q, Ma). If M is an
IFr1-module for IF a field of non-zero characteristic p, then Ext(Q, Ma) is an
abelian group which is both divisible and annihilated by p, so is trivial. If M
is an FF1-module for F a field of characteristic zero, then M. is a divisible
abelian group, so is 7G-injective, and so once again Ext(Q, Ma) = 0. On
the other hand, H3(r1i Zr1) is non-zero, because it admits Ext(Q, Z) as a
quotient, and Ext(Q, Z) is a Q-vector space of uncountable dimension.

The group r1 requires infinitely many generators, but a 2-generator exam-
ple may be constructed from rt using an embedding theorem of Higman
Neumann and Neumann ([16], Theorem 6.4.7). They show that any count-
able group G may be embedded in a 2-generator group G constructed as an
HNN-extension with base group the free product of G and a free group of rank
two, and associated subgroups free of infinite rank. An easy Mayer-Vietoris
argument shows that for any ring R,

cdRG < cdRG < max{2, cdRG}.

Thus I'1 is a 2-generator group with cdI'1 = 3 but cdFPl = 2 for any field
F. We do not know whether there is a finitely presented group with this
property, but the referee showed us the following Proposition (see also [2],
9.12).

Proposition 9. Let G be a group of type FP. Then there is a prime field
F such that cdFG = cdG.

Proof Recall that if G is of type FP, then for any ring R, cdRG is equal to
the maximum n such that H"(G; RG) is non-zero, and that if cdG = n, then
for any R, H"(G; RG) is isomorphic to H"(G; 7GG) ® R ([4], p199-203). Let
M stand for H"(G; ZG), where n = cdG. Since HomG(P, ZG) is a finitely
generated right 7LG-module for any finitely generated projective P, it follows
that M is a finitely generated right 76G-module.
If M 0 F, is non-zero for some prime p we may take F = F. If not, then M
is divisible and hence, as an abelian group, M is a direct sum of a number
of copies of Q and a divisible torsion group ([16], Theorem 4.1.5). If M ® Q
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is non-zero then we may take F = Q. It remains to show that M cannot
be a divisible torsion abelian group. Suppose that this is the case, and let
m1 i ... , Mr be a generating set for M as a right ZG-module. If N is the
least common multiple of the additive orders of the elements m1, ... , mr,
multiplication by N annihilates M, contradicting the divisibility of M.

Example 3. (A torsion-free rational Poincare duality group of dimension
four which is not an integral Poincare duality group.) Fix an odd prime q,
and let X be a lens space with fundamental group of order q, i.e., X is a
quotient of the 3-sphere by a free linear action of the cyclic group of order q.
It is easy to see that X is triangulable. The homology groups of X are (in
ascending order) Z, Z/(q), {0} and Z. From the universal coefficient theorem
it is easy to see that X has the same R-homology as the 3-sphere for any
commutative ring R in which q is a unit. Now let (r, V) be a right-angled
Coxeter system such that K(r,V) is a triangulation of X. By Corollary 7,
any finite-index torsion-free subgroup r1 of r is a Poincare duality group of
dimension four over any R in which q is a unit.
We claim however, that r1 is not a Poincare duality group (or PD-group for
short) over the field Fg, which implies that it cannot be a PD-group over the
integers. Since all finite subgroups of r have order a power of two and q is
an odd prime, it follows from Theorem V.5.5 of [10] that r1 is a PD-group
over Fq if and only if r is. We shall assume that r is a PD-group over IFq and
obtain a contradiction.
Firstly, note that the Fq-cohomology groups H°, . . . , H3 of X are all isomor-
phic to 1Fq . Now it follows from Theorem 2 part c) that the right r-module
H'(F; Fqr) admits 1Fq (as defined just above the statement of Theorem 2) as
a quotient. Thus F has cohomological dimension four over Fq, and if r is a
PD-group over Fg, its orientation module must be IF. In particular, for any
Fqr-module M, there should be an isomorphism for each i

H'(r; M) = Ext;9,,(Fq, M) =' TorF"r(IFq) M).

Now let M be the F-bimodule IF, viewed as a left Fgr-module. There is an
Fq-algebra automorphism ¢ of Fgr defined by ¢(v) = -v for each v E V,
because the relators in r have even length as words in V. The r-bimodule
obtained from FQ by letting Fq r act via ¢ is the trivial bimodule Fq. Thus
for each i, 0 induces an isomorphism

TorF9r(IFq,IFq) = Tor!9 r (Fq, Fq).

(Here we are viewing the bimodules as left modules when they appear as the
right-hand argument in Tor, and as right modules when they appear as the
left-hand argument.) Putting this together with the isomorphism obtained
earlier, it follows that if r is a PD-group over Fq, then for each i,

H'(r;FFq) = ExtFgr(Fq,IFq) H4-i(r;Fq) (*)
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The cohomology groups H°, ... , H4 of r with coefficients in lEq are calculated
in Theorem 2 part d); as vector spaces over lFq they have dimensions 0, 0, 1,
1, and 1 respectively. We claim now that any finitely generated right-angled
Coxeter group is 1Fq-acyclic, i.e., its homology with coefficients in the trivial
module lFq is 1-dimensional and concentrated in degree zero. This leads to
a contradiction because given the claim, the isomorphism (*) for i = 2 or 3
is between a 1-dimensional vector space and a 0-dimensional vector space.
The claim follows from Theorem 4.11 of [9], which is proved using an elegant
spectral sequence argument. It is also possible to provide a direct proof by
induction on the number of generators using the fact (see [6] or [12]) that a
finitely generated right-angled Coxeter group which is not a finite 2-group is
a free product with amalgamation of two of its proper special subgroups, and
applying the Mayer-Vietoris sequence.

Remarks. 1) Note that the only properties of the space X used in Example
3 are that X be a compact manifold which is triangulable (in the weak sense
that it is homeomorphic to the realisation of some simplicial complex), and
that for some rings R, X be an R-homology sphere, but that there be a
prime field 1Fq for q 0 2 such that X is not an 1Fq-homology sphere. These
examples show that being a GD-group over R (in the sense of [10], V.3.8) is
not equivalent to being a PD-group over R.
2) If f is a Coxeter group such that K(f, V) is a triangulation of 3-dimensional
real projective space, then Corollary 7 shows that any torsion-free finite-index
subgroup of f is a PD-group over any R in which 2 is a unit. The methods
used above do not show that such a group is not a PD-group over R when
2R 0 R however. The results of the next section show that this is indeed the
case.

5. Cohomology of Coxeter groups with free coefficients

The results of this section were shown to us by the referee, although we are
responsible for the proofs given here. The main result is Theorem 10, which
computes H" (I', RI') for any Coxeter group 1' such that K(1', V) is a (trian-
gulation of a) closed compact oriented manifold. This should be contrasted
with Theorem 2, which applies to any Coxeter group, but gives only partial
information concerning cohomology with free coefficients. Theorem 10 may
be used to prove Corollary 7 and to give an alternative proof of the existence
of Example 3 of the previous section.
Let K be a locally finite simplicial complex, so that the cohomology of K
with compact supports, H,(K) is defined, and suppose that we are given a
sequence

K1DK2DK3J...
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of subcomplexes such that each K. is cofinite (i.e., each K, contains all but
finitely many simplices of K), and the intersection of the K;'s is trivial. For
j > i, the inclusion of the pair (K, K;) in (K, K,) gives a map from H*(K, KT)
to H* (K, K;), and the direct limit is isomorphic to H,. (K):

H: (K) = lim(H*(K, K1) -* H*(K, K2) - ...). (**)

(To see this, it suffices to check that a similar isomorphism holds at the
cochain level.)

Theorem 10. Let R be a ring, let (F, V) be a Coxeter system such that
K(r, v) is a triangulation of a closed compact connected n-manifold X, and
suppose that either X is orientable or 2R = 0. Then as right RF-module, the
cohomology of F with free coefficients is:

10 for i = 0 or 1,

H'(F, RF) = Hs-1(X; R) OR RF for 2 < i < n,

R° fori=n+1.
(Here R° is the F-module defined above Theorem 2.)

Proof By hypothesis the complex D = D(F, V) is locally finite, and so
H* (F, RF) is isomorphic to HH (D; R). Recall that the complex D may be
built up from a union of a collection of cones on the barycentric subdivision
K' of K(r, v) indexed by the elements of F. For -y E F, let C(ry) be the
cone with apex the coset -y{1}. In terms of the description of D in the proof
of Theorem 2, C(ry) consists of all simplices of D which may be represented
in the form ('y, V0,. .. , V.. ) for some m and subsets Vo .... V,,, of V. For any
enumeration 1 = ryl, y2, ry3, ... of the elements of r, define subcomplexes E;
and D; of D by

E1 = U C(-y,), D, = U C('Yj)
i<t j>i

Davis' original proof that D is contractible [8] uses the following argument.
For W a subset of V, define K, (W) to be the subcomplex of K' = K(F, V)'
consisting of the simplices having a face in common with K((W), W)' C
K(F,V) and all of their faces. The simplicial interior, intK,(W), of K,(W)
(i.e., the union of the topological realisations of the open simplices of K,(W)
which are not faces of any simplex of K' - K, (W)) deformation retracts onto
K((W), W) by a linear homotopy. In particular, this interior is contractible
if (W) is finite, and it may also be shown that in this case K, (W) is itself
contractible. In [8] an enumeration of the elements of r is given such that for
each i there exists W C V with (W) a finite subgroup of r, and E; fl C(72 1)
is isomorphic to K,(W) C K' by the restriction of the natural isomorphism
C(ryi+1) ^_' CK'. By induction it follows that each Ei is contractible, and
hence that D is.
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Throughout the remainder of the proof fix an enumeration of r as in the
previous paragraph. From (**) it follows that

H*(F; RF) =' H,* (D; R) ^_' lim(H*(D, Di; R)).

Let F. = Di f1 Ei, which could be thought of as the boundary of E. By exci-
sion, H*(D, Di; R) is isomorphic to H*(Ei, Fi; R), and since Ei is contractible,
this is in turn isomorphic to the reduced cohomology group H*-'(Fi; R). So
far we have used none of the conditions on K(r, V) except that V be finite.
The hypothesis that K(F,V) be a closed R-oriented n-manifold is used to
compute the limit of the groups ft*-' (Fi; R). In effect, Fi is a connected sum
of i copies of K'. More precisely, if Wi C V is such that Eif1C(yi+1) = K,(Wi),
then Fi+1 is obtained from Fi - intK,(Wi) and K- intK,(Wi) by identifying
the two copies of K,(Wi) - intK,(W,). (We defined the simplicial interior
intL of a subcomplex L of K' to be a topological space, but it is easy to see
how to define a subcomplex M - intL of M for any L C M C_ K'.) Given
our hypotheses on K(F, V), there are equalities

- (
H3(K' - intK,(Wi); R)

Hi (K'; R) for i n,

0 fori=n,
while K, (Wi) - int K, (Wi) is a homology (n - 1)-sphere by Poincare-Lefschetz
duality for K,(Wi). From the usual argument used to compute the cohomol-
ogy of a connected sum and induction it follows that

®k-1 Hi (K'; R) for 0 < j < n,
R)

R for j = n.

Moreover, the map from Hi(Fi; R) to Hi(Fi+1i R) given by

Hi (Fi; R) - Hi+1(D Di; R) -+ Hi+1(D, Di+1; R) - H' (Ri+1; R)

is the inclusion of the first i direct summands for j < n and the identity for
j = n.
As a right F-module, Hn +' (D; 7G) is isomorphic to 7G° by Theorem 2c), and
the claim for general R follows by the universal coefficient theorem. To verify
the claimed right F-module structure for HH (D; R) for j < n, note that for
each i, the images of Di under translation by each of 'yl 1, ... , 'yt ' are
contained in DI, and check that the i corresponding maps

Hi-' (K'; R) = Hi (D, D1; R)

I
Hi (D, Di; R) Hi-1(K,; R) ® ... ® Hi-1 R)

are the inclusions of the i distinct direct summands.
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Remark. A group G is a PD-group over R if and only if it is of type FP
over R and H* (G; RG) is isomorphic to R concentrated in a single degree. It
follows that if r is such that K(F, V) satisfies the hypotheses of Theorem 10,
then a finite-index torsion-free subgroup of r is a PD-group over R if and only
if K(F, V) is an R-homology sphere. For example, if K(F, V) is a triangu-
lation of 3-dimensional real projective space, then a finite-index torsion-free
subgroup of r is a PD-group of dimension four over R if and only if 2R = R.

6. Generating sets for torsion-free subgroups

In this section we shall consider only right-angled Coxeter groups, so (F, v)
shall be a right-angled Coxeter system, and K(F, V) a full simplicial complex.
The numerical information that we give will not be very useful if V is infinite.
Recall from Section 3 that a colouring c : V -* W of the graph K' (F, V) with
colour set W gives rise to a homomorphism from r to a product of copies of
the cyclic group C2 indexed by the elements of W, such that the kernel r, is
torsion-free.

Proposition 11. Let (F, V) be a right-angled Coxeter system, and let
c : V -* W be a colouring of K1(F, V). Let F1 be the kernel of the induced
map from r to C2 w. For w,w' E W, define K'(F,V)(w,w') to be the largest
subgraph of K' (F, V) all of whose vertices have colour w or w'. Let S be the
following set of elements of F1.

S = {vv' I v, v' E V, c(v) = c(v')}

i) If c is such that any two colours w, w' are adjacent in K' (F, v), then S
generates r, as a normal subgroup of F.
ii) If c is such that for each w, w' E W the graph Kl (F, V) (w, w') is connected,
then S generates F, as a group.

Proof Let Q be the quotient of F by the normal subgroup generated by S.
Then Q has C2 as a quotient, and the images of v and v' in Q are equal
if c(v) = c(v'), so Q is generated by a set of elements of order two bijective
with W. If the colours w, w' are adjacent in K' (F, v), there exist v, v'
with c(v) = w, c(v) = w' which commute in F. Thus under the hypothesis
in i), the relations of Q include relations saying that all pairs of generators
commute, and so Q is isomorphic to CZ. The hypothesis in ii) implies that
in i), so it remains to prove that when each K' (F, V) (w, w') is connected, the
subgroup generated by S is normal. For this it suffices to show that if u, v, v'
are elements of V with c(v) = c(v'), then uvv'u is in the subgroup generated
by S. Let

v = V1, U1, V2, U2, > vn-1 7 Un-1 ) vn = V1
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be the sequence of vertices on a path in the graph K' (r, V) (c(v), c(u)) be-
tween v and v'. Thus c(vi) = c(v), c(ui) = c(u), and for all 1 < i < n - 1, ui
commutes with vi and vi+1. These commutation relations imply that uvv'u
is expressible as the following word in elements of S.

(Uu1)(vlv2)(ulu2)(v2v3)...(vn-2vn-1)(Un-2un-1)(vn-lvn)(un_1u) = uvv'u

Remark. The hypothesis in i) is not very strong. Given a colouring of a
graph in which there exist colours w and w' which are not adjacent, it is
possible to identify the colours w and w' to produce a new colouring of the
same graph using fewer colours.

Corollary 12. Let L be an n-dimensional simplicial complex having N
simplices in total, such that every simplex of L is a face of an n-simplex and

ILI - ILn-2I is connected. If (r, v) is such that K(r,V) is the barycentric
subdivision of L, then r has a torsion-free normal subgroup r1 of index 2n+1,
which may be generated by N - n - 1 elements. r has no torsion free subgroups
of lower index, and any normal subgroup of this index requires at least this
number of generators.

Proof Vertices of K(r,V) correspond bijectively with simplices of L, and
we may colour K1(r, v) with the set {0, ... , n} by sending a vertex to the
dimension of the corresponding simplex of L. Let r, be the kernel of the
induced homomorphism onto C2+1. Even without the extra conditions on
L, r, is a torsion-free subgroup of r of index 2n+1. Since the vertices of
an n-simplex of K(r,V) generate a subgroup of r isomorphic to Cr', r
cannot have a torsion-free subgroup of lower index. The abelianisation of r is
isomorphic to C" VI and so r cannot be generated by fewer than N elements. If
r2 is any normal subgroup of r of index 2n}1, then r/r2 can be generated by
n + 1 elements, so r2 cannot be generated by fewer than N - n - 1 elements.
Now we claim that the extra conditions on L are equivalent to the condition
that for any i, j E {O,.. . , n}, the graph K1(r, V) (i, j) (as defined in the
statement of Proposition 11) is connected. Firstly, ILI - ILn-2I is connected if
and only if K' (r, V) (n, n-1) is connected. Now if K' (r, V) (n, i) is connected,
every i-simplex of L is a face of some n-simplex. For the converse, note
first that in the special case when L is a single n-simplex, K' (r, V) (i, j) is
connected for each i < j < n. In the case when j = n this is trivial, and for
general n follows by an easy induction. For the case of arbitrary L, to find
a path between any two vertices v, v' of K1(r, v) (i, j ), first pick n-simplices
u, u' of L such that v is a face of u and v' is a face of u'. Then pick a path
in K1(r, V) (n, n - 1) between u and u'. For each (n - 1)-simplex occurring
on this path, pick one of its i-simplices. This gives a sequence W1, ... , wm
of i-simplices such that w, and w,+1 are faces of the same n-simplex for each
1, and similarly for the pairs v, w, and v', wn. By the special case already
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proved, there are paths in K' (r, V) (i, j) between each of these pairs, which
concatenate to give a path from v to v'.
Hence by Proposition 11, r1 can be generated by the set of pairs vv', where v
and v' correspond to simplices of L of the same dimension. If we fix for each
dimension i one generator v;, then vv' _ (v;v)-'(v;v'), so we really need only
the pairs viv to generate r,, and there are exactly N - n - 1 of these.

Remarks. 1) The conditions imposed on the simplicial complex L are sat-
isfied if L is a triangulation of a connected n-manifold, or more generally if
ILI is the closure of a subset which is a connected n-manifold. These condi-
tions cannot be omitted. Let L be the simplicial bow tie, consisting of two
triangles joined at a point, and let r, r1 be the Coxeter group and subgroup
of index 8 constructed from L as in Corollary 12. Note that ILI - IL°I is not
connected. Using GAP [17] it may be shown that the abelianisation of rl is
free of rank 11, and so r1 requires at least 11 generators, rather than the 10
which would suffice if Corollary 12 applied.
2) When (as in Corollary 12) the Coxeter group r has a torsion-free normal
subgroup r1 of index equal to the order of the largest finite subgroup of r,
this torsion-free subgroup will not usually be unique.

There are other ways to construct a torsion-free group having similar homo-
logical properties to a given right-angled Coxeter group. One generalisation of
the construction given above is as follows. Given a right-angled Coxeter group
r, and a homomorphism ' from r onto a finite group Q with torsion-free ker-
nel r,, let A be any torsion-free group and 0 any homomorphism from A to Q.
The group P defined as the pullback of the following diagram is torsion-free
and has finite index in r x A.

P -* A

I 1o

r Q

The group r1 occurs as such a pullback in the case when A is the trivial group.
The point about taking different choices of A is that the resulting group may
have a simpler presentation than rl. One such result is the following.

Proposition 13. Let (r, V) be a right-angled Coxeter system, and fix an
(n + 1) -colouring c of K'(r, V). Let K(r, V) have M edges, and N vertices.
Suppose that the colouring of K'(r, V) has the property that for every v E V,
the star of v contains vertices of all colours. Then there is a torsion-free
group, P, of finite index in r x 7G"+1 having a presentation with N generators
and M + N - n - 1 relators, all of length four. Identifying the generators of
P with the set V, the relators are the following words.
i) For every edge with ends v, v' in K(r, v), the commutator [v, v'].
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ii) For each colour w E W, for some fixed v,,, with c(vw) = w, and for each
v 0 v,,, such that c(v) = w, the word v2vw2.

Proof Let P1 be the group presented by the above generators and relations. It
suffices to show that P1 is isomorphic to the pullback P in the diagram below,
where W is the (n+1)-element set of colours, ¢ is the natural projection and
L' is the homomorphism induced by the colouring c.

P * Zw
I to
r -±4 C2

Identify the standard basis for Z' with the set W. The elements (v, c(v))
of F x 7Lx' are naturally bijective with V, and satisfy the relations given in
the statement. Thus there is a homomorphism from P1 to P < IF x 7L`t'
which sends v to (v, c(v)). It remains to show that this homomorphism is
injective and is onto P. The relations given between the elements of V suffice
to show that each v2 is central in P1, because given v, v', there exists v" such
that c(v) = c(v") and there is an edge in K(P, V) between v' and v". By
applying the relations given, one obtains [v2, v'] = [(v")2, v'] = 1. Let P2 be
the subgroup of P1 generated by the elements v2. It is now easy to see that
P2 is central in P1, and is free abelian of rank n + 1. Under the map from P1
to P, P2 is mapped isomorphically to the kernel of the map from P to r. The
quotient P1/P2 has the same presentation as P. It follows that P1 is mapped
isomorphically to P.

Remark. The condition on the colouring in the statement of Proposition 13 is
weaker than the condition of part ii) of Proposition 11. It could be restated as
saying that `every component of each K(r, V) (w, w') contains vertices of both
colours w and w". In the case when K(r, V) is the barycentric subdivision of
an n-dimensional simplicial complex L and the colouring taken is the usual
`colouring by dimension', the condition is equivalent to the statement that
every simplex of L should be contained in an n-simplex.

7. Presentations of some of Bestvina's examples

In this section and the next we shall give some explicit presentations of groups
whose cohomological dimensions differ over 7G and Q. To simplify notation
slightly we shall adopt the convention that if x is a generator in a group
presentation, x denotes x-'. Much of the section will be based around the
eleven vertex full triangulation of the projective plane given in figure 1, where
of course vertices and edges around the boundary are to be identified in pairs.
Proposition 14 shows that this triangulation is minimal in some sense.
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Fig. 1

Proposition 14. There is no full triangulation of the projective plane having
fewer than 11 vertices.

Proof The following statements are either trivial or followed by their proof.
A triangulation of the projective plane with N vertices has 3(N-1) edges and
2(N - 1) faces. A full triangulation of a closed 2-manifold can have no vertex
of valency 3 or less. The only 2-manifold having a full N-vertex triangulation
with a vertex of valency N - 1 is the disc. The only closed 2-manifold having
a full triangulation with a vertex of valency N - 2 is the 2-sphere. There
is no triangulation of the projective plane having 7, 8, or 9 vertices, each of
which has valency 4 or 5. (Write an equation for the numbers of vertices of
each valency and obtain a negative number of vertices of valency 4.) There
are triangulations of the projective plane having 6 vertices, all of valency 5,
but they are not full.
There is no 9 vertex full triangulation of the projective plane: Assume that
there is such a triangulation. Then by the above we know that it has a vertex
of valency 6. This vertex and its neighbours form a hexagon containing twelve
edges. There are no further edges between the vertices of this hexagon, so all
the remaining twelve edges contain at least one of the remaining two vertices.
Hence at least one of these two vertices is joined to each of the boundary
vertices of the hexagon, giving an eight vertex triangulation of the 2-sphere
before adding the final vertex.
Any 10 vertex full triangulation of the projective plane has no vertex of
valency seven: Assume that there is such a vertex. Then it and its neighbours
form a heptagon containing 14 edges. There are 13 other edges, each of which
must contain at least one of the other two vertices. Thus either one of these
vertices is joined to all of the boundary vertices of the heptagon and this gives
a 9 vertex triangulation of the 2-sphere before adding the final vertex, or the
final two vertices are joined to each other and to six each of the boundary
vertices of the heptagon, in which case the complex contains a tetrahedron
(consisting of the two final vertices and any two of the boundary vertices of
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the heptagon adjacent to both of the final vertices).
Any 10-vertex full triangulation of the projective plane has at least four ver-
tices of valency six (there are no vertices of valency higher than 6 by the
above, and the sum of the 10 valencies is 54). If no two of these are adjacent,
then they all have the same set of neighbours, but now all the other vertices
have valency 4 and the total is wrong. Hence we may assume that a pattern
of edges as in figure 2a occurs in the triangulation.

VVV
w

Fig. 2a Fig. 2b

All of the vertices are already in the picture, and so the vertices marked V
and W can have no other neighbours. Hence the triangulation contains the
pattern of edges shown in figure 2b. With two vertices of valency 4, there
must be at least six vertices of valency 6. Hence by symmetry it may be
assumed that the vertex X is one such. The only possible new neighbours
for X are the vertices Y and Z. Adding edges XY and XZ, together with
the faces implied by fullness, a triangulated disc whose boundary consists of
four edges is obtained. There is only one way to close up this surface without
adding new vertices or violating fullness, and this gives a triangulation of
the 2-sphere (as may be seen either by calculating its Euler characteristic, or
simply from the fact that after removing one face it may be embedded in the
plane).

Remark. The smallest triangulation of the projective plane which is a bary-
centric subdivision has 31 vertices.

It is easy to see that the triangulation of figure 1 cannot be 3-coloured, and
also that it has no 4-colourings in which every vertex has a neighbour of each
of the three other colours (see Proposition 13). It does have a 4-colouring in
which all but one of the vertices has neighbours of three colours, and even in
which all but one of the colour-pair subgraphs (as defined in the statement
of Proposition 11) are connected. The colouring with vertex classes

{a, c,e}, {b,d, f}, {g, h, j}, {i,k}

is one such. Let (P,V) be the right-angled Coxeter system with K(r, V) as in
figure 1. The above 4-colouring gives rise to an index 16 torsion-free subgroup
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of F. It is easy to see that as a normal subgroup this group is generated by
the eight elements

ac, ae, bd, b f , gh, g j, ik, gigi = [g, i].

Moreover, the techniques of the proof of Proposition 11 can be used to show
that the subgroup generated by these elements is already normal, and hence
that these eight elements generate an index 16 subgroup r2 of F.
It is still possible to improve upon r2. Let elements 1, m, and n generate a
product of three cyclic groups of order two, and define a homomorphism Vb
from r to this group by the following equations.

''(a) =')(c) =''(e) = 1 'fi(b) = '(d) ='b(f) = m
V)(g) = '(h) = ',(j) = n '(i) = 0(k) = 1mn

The homomorphism z/i maps each of the maximal special subgroups of r
isomorphically to the group generated by 1, m and n, and hence its kernel
rl is a torsion-free normal subgroup of r of index eight, which contains the
index sixteen subgroup r2 of the previous paragraph. The element bcgi is in
rl, but is not in r2. However, since both b and c commute with g and i, its
square is (bcgi)2 = gigi. It follows that the eight elements

ac, ae, bd, b f , gh, g j, ik, bcgi

generate the group r1. Any normal subgroup of r of index eight requires at
least eight generators (see Proposition 11), so there is a sense in which rl is
best possible.
The Euler characteristic x(r) may be calculated using I. M. Chiswell's formula
[7], and then x(r1) is equal to IF : riIx(r). In fact, for a group having a
finite Eilenberg-Mac Lane space (such as rl), this Euler characteristic is just
the usual (topological) Euler characteristic of the Eilenberg-Mac Lane space.
Indeed, Chiswell's formula can be obtained by using the Davis complex to
make a finite Eilenberg-Mac Lane space for a torsion-free subgroup of finite
index in a Coxeter group, and then dividing by the index. Since the complex
K(r, V) has 11 vertices, 30 edges, and 20 2-simplices, while rl has index
eight, the formula gives

x(r1)=8(1- 2 + 8)=4.
Using the computer algebra package GAP [17], together with some adjust-
ments suggested by V. Felsch, we were able to find the presentation for rl
given below, which has 8 generators and 12 relations of total length 70 as
words in the generators. (Recall our convention that x stands for x-1.)

rl = (s, t, u, v, w, x, y, z I ysys, vxvx, z2wx2w,
x2wuwu, yuzyzu, uwuz2w, zyztyt, uzsusz

tzwtwz, vztzvt, vwyvyw, vwzsvzsw)
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As words in the eleven generators of the Coxeter group r the above generators
are:

s = ca, t = db, u = f b, v = ki, w = eigb, x = hbie, y = jg, z = cigb.

We know that F1 needs eight generators, and also that an Eilenberg-Mac Lane
space K(I'1i 1) must have at least one 3-cell (because H3(F1; Zr1) is non-zero
by Theorem 2 or Corollary 3). We also know that the Euler characteristic of
F1 is 4, and it follows that the above presentation has the minimum possible
numbers of generators and relations. Proposition 4 implies that there is a
K(F1,1) of dimension three having exactly one 3-cell, but it does not follow
that one may make a K(F1i 1) by attaching one 3-cell to the 2-complex for a
presentation with 8 generators and 12 relations.
In the next section we shall give another presentation for r1 (although we shall
not prove this), also having the minimum numbers of generators and relations,
but with the total length of the relations slightly longer than here. The
advantage of the other presentation is that it shows how the group presented
(which is in fact r,) can be built up using free products with amalgamation
from surface groups, and gives an independent proof that the cohomological
dimension of r1 over a ring R depends on whether 2 is a unit in R. We also
describe an attaching map for a 3-cell to make an Eilenberg-Mac Lane space
K(I'1i1) from the 2-complex for the new presentation.
It is worth noting that the technique used in Proposition 13 may be applied
to the group t to give an 11 generator group of cohomological dimension five
over any ring R such that 2R = R, and six over other rings, with thirty-seven
relators of length four, and one relator of length eight. The relators are the
thirty commutators corresponding to the edges in figure 1, together with the
following words.

a262, a2e2, b2d2, b2f2, 92h2, 9232, i2k2, b2C29222

As in Proposition 13, one verifies that the subgroup generated by the squares
of the eleven generators is central and free abelian of rank three, and that the
quotient group is isomorphic to r.

8. A handmade Eilenberg-Mac Lane space

Theorem 15. The group A given by the presentation below has cohomo-
logical dimension three over rings R such that 2R R, and cohomological
dimension two over rings R such that R = 2R.

A = (s, t, u, v, w, x, y, z I svstutuvi, w2412, svsvwsvsvw,

x2vsvs, xwvsvwxs, uvwxu5wv, wytvywvt,

ywuwytut, y2svsro, zsuvsuvz,

zvz vuxwzxw, swyzswyxwzxw)



On subgroups of Coxeter groups 151

There is an Eilenberg-Mac Lane space K(A,1), having only one 3-cell and
whose 2-skeleton is given by the above presentation. The 2-sphere forming
the boundary of the 3-cell is formed from the hemispheres depicted in figures
3a and 3b.

Remark. In fact this group is isomorphic to the index eight subgroup P,
of the 11 generator Coxeter group r of the previous section. The following
function ¢ from the generating set for A given above to r extends to a ho-
momorphism from A to r, because the image of each relator is the identity
element. Moreover, it is easy to see that the image of 0 is equal to r, We
shall not prove that the kernel of 0 is trivial.

0(s) = ca 0(t) = hbia 0(u) = akia 0(v) = bgia

O(w) = gif a q(x) = fija ¢(y) = fgie O(z) = dgkc

Proof of Theorem 15 We shall build the group A in stages via a tower of
free products with amalgamation, obtained by applying an algorithm due to
Chiswell [6]. We shall use the same argument at each stage to justify this
process, but shall give less detail as the steps become more complicated. Let
Ao be the group given by the following presentation.

Ao = (s, t, u, v I svstutuv)
Do is the fundamental group of a closed non-orientable surface of Euler
characteristic -2, and the 2-complex corresponding to the above presenta-
tion is a CW-complex homeomorphic to this surface. In particular Do is
torsion-free, and the 2-complex corresponding to the given presentation is an
Eilenberg-Mac Lane space K(D0,1).
Now let F0 be the free group on generators w and w'. Define automorphisms
a and g of Fo by the equations

Wa = w2w', w'a = 4U', w9 = w211, wi9 = ww'w.

It is easy to check that a and g have order two and commute with each
other, so that they generate a subgroup of Aut(Fo) isomorphic to the direct
product of two cyclic groups of order two. Let Go be the subgroup of Aut(Fo)
generated by F0, a and g, which is isomorphic to the split extension with
kernel Fo and quotient of order four generated by a and g. Now define a
homomorphism bo from Ao to Go by

bo(s) = a, 00(t) = gw, Vo(u) = agw, 0, (v) = w.

This does define a homomorphism from Ao to Go, because the image of the
relator is the identity element, as shown below.

,io(svstutuv) = awa(gw)(agw)(wg)(agw)w

= awagwg
= ww'w'w

=1



152 W. Dicks, I.J. Leary

Regions are to be read counter-clockwise.

Edge labels are on the left of the edge,
and on the right of the inverse edge.

Pins indicate base points for regions.

Fig. 3a
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Fig. 3b
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Now the images of svsv, v2 and vsvs under 0o are w', w2 and ww'w respec-
tively. These elements generate a normal subgroup of Fo of index two, which
is therefore free of rank three. (Subgroups of index two are always normal,
but what one does is to check that the subgroup is normal, and then show
that it has index two by calculating the order of the quotient.) It follows
that the elements svsv, v2 and vsvs freely generate a free subgroup of A,
and that this subgroup is mapped isomorphically by 0o to the subgroup of F0
generated by w', w2 and ww'w. Hence a free product with amalgamation may
be made from A, and F0 by taking the free product and adding the relations
w' = svsv, w2 = v2, and ww'zu = vsvs. This gives a group L. Using the
first of the three new relations to eliminate the generator w', it follows that
A, has a presentation as below.

A, = (s, t, u, v, w I svstutuv, w2v2, svsVwsvsvw)

Moreover, the 2-complex corresponding to this presentation is a K(0,,1).
Now take a free group F, of rank three generated by elements x, x' and x".
Define an automorphism f of F, by

xf = x, x'f = xx'x, x"f = xi'x.

It may be seen that f has order two. Let G, be the split extension with
kernel F, and quotient the group of order two generated by f, or equivalently
the subgroup of Aut(F1) generated by F, and f. Define a homomorphism 01
from A, to G, as below.

01(8)=X" O1(t) = xf, 1(u) = x", 01(v) = xf, '%1(w) = x

As before, to check that this does define a homomorphism it suffices to verify
that 01 sends each relator to the identity in G,. The images of s, u, svsv,
wvsviu, and wvuvw under V), are x', x", x2, xxx, and xx"x respectively.
These five elements generate a normal subgroup of F, of index two, which
is therefore a free group on five generators. It follows that the subgroup
of A, generated by s, u, svsv, wvsvw, and wvuvii is freely generated by
these elements and is mapped isomorphically to a free subgroup of F, by V),.
Hence we may form an amalgamated free product of A, and F1, identifying
the two five generator free subgroups via 01. Call the resulting group D2.
After eliminating the generators x' and x" and the relations x' = s, x" =
u, the group A2 has the presentation given below. Once again, because
the amalgamating subgroup is free, the 2-complex for this presentation is a
K(A2j 1).

O2 = (s, t, U, v, w, x I svstutuv, w2v2,
svsvwsvsvw, x2vsvs,

xwvsvwxs, uvwxuxwv)
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Take a free group F2 of rank three with generators y, y', y", and define
automorphisms f and i of F2 by the following equations.

yf =y Y
if

99,9 y"f = yy y"yy
y=y y`=yy2 y,i = 911,

It may be checked that i and f have order two and commute, so they generate
a subgroup of Aut(F2) isomorphic to a direct product of two cyclic groups
of order two. Let G2 be the subgroup of Aut(F2) generated by F2, f and
i. Define a homomorphism 02 from A2 to G2 by checking that the function
defined as follows on the generators sends each relator to the identity in G2-

02 (S) = 1 /02(t) = y'yf 02(u) = y"
02(v) = yf 02 (W) = y 42(x) = fi

Now z/i2 sends the elements tv, tut, vsvs, wtvw, and wuw to y', y", y2, yy'y
and yy" y respectively, and these five elements generate a normal subgroup of
F2 of index two, which they therefore freely generate. Hence we may make
an amalgamated free product 03 from the free product of A2 and F2 by
adding the five relations tv = y', ... , wuw = yy" y. After eliminating the
generators y' and y", we obtain the following presentation for A, such that
the corresponding 2-complex is a K(A3i1).

A3 = (s, t, u, v, w, x, y, z I svstutuv, w2v2, susvwsvsvw,

x2vgvs, xwvsvwxs, uvwXuxwv, wytvywvt,

ywuwytut, y2svsv)

Now take a 1-relator group F3, with presentation

F3 = (z, z', z" I z'zz'z"zz").

F3 is the fundamental group of the closed nonorientable surface of Euler
characteristic -1. The 2-complex corresponding to this presentation is a
cellular decomposition of this surface, so in particular is a K(F3i1). Define
automorphisms c and g of F3 by the following equations.

z`=z'zz' z"=z' Z' =z"
z9 = z'zz' zi9=z' z"9=z"

To check that c and g as defined above do extend to homomorphisms from
F3 to itself, note that

(z'zz'z"zz")° = zz'zz'z'z"z'zz'z" = zz'z'zz'z'

is equal (in the free group) to a conjugate of the relator, and similarly
(z'zz'z"zz")9 is equal to a conjugate of the inverse of the relator. It is easy to
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check that c and g define commuting involutions in Aut(F3) (and even on the
free group with the same generating set). Now let G3 be the split extension
with kernel F3 and quotient the subgroup of Aut(F3) generated by c and g.
(Since F3 has trivial centre, G3 is isomorphic to a subgroup of Aut(F3).)
Define a homomorphism y'3 from A3 to G3 by taking the following specifica-
tion on the generators, and checking that the image of each relator is equal
to the identity in G3.

03(s) = C 03(t) = 1 4'3(u) = 9zC 03(v) = 9
03(w) = 9 13(x) = Z"9 03(y) = 9z'c

Let H be the subgroup of A3 generated by yws, xw, vusvus and wxuvuv. The
images of these elements under 0 are z', z", z2 and zz"z respectively. These
four elements of F3 generate a normal subgroup 03(H) of index two, which
turns out to be an orientable surface group (necessarily of Euler characteristic
-2). If we write a = z2 and ,Q = zz"2, then ?/3(H) may be presented as
follows.

03(H) = (z', z", a, fi I a/3az"z')32"z')

We claim that 03 restricted to H is injective. For this it suffices to show that
the word in the four generators for H mapping to the relator in b3(H) is
equal to the identity in 03. Expressed in terms of the generators for z 3i the
word is

- - - - - -- -- - - - -suvsuvwxuvuvvusvusxwsw yvuvuxwwxyws,

so after cyclically reducing this word it suffices to show that in A3,

uvsuvwxuvsvusxwsvuyvuvuyw = 1.

A Lyndon (or van Kampen) diagram whose boundary is this word, made from
eighteen 2-cells each of which has boundary one of the nine relators in A3, is
shown in figure 3a. This diagram was found, with too much effort, using the
normal form for elements of free products with amalgamation. It follows that
we may form an amalgamated free product A of A3 and F3 amalgamating H
and 13(H). The generators z' and z" may be eliminated using the relations
z' = yws and z" = xw, and the resulting presentation of A is the one given
in the statement.
To make an Eilenberg-Mac Lane space for A it suffices to attach a 3-cell to
the 2-complex for the above presentation corresponding to the relator in the
amalgamating subgroup. The boundary of this 3-cell is made from two discs
(Lyndon diagrams expressing the relator in H in terms of the relators in As
and the relator in 03 (H) in terms of the relator in F3) and a cylinder (whose
sides represent the identification of the generators of H with their images
under 03). One of the discs is figure 3a. After eliminating z' and z" as above,
the rest of the sphere is as shown in figure 3b.
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To verify the claim concerning H3(A; M) we use the free resolution for Z
over ZL given by the cellular chain complex for the universal cover of the
Eilenberg-Mac Lane space K(A,1) constructed above. In the 1-skeleton of
the sphere illustrated in figure 3, choose, for each of the twelve relators, an
oriented path between the base points of the two occurrences of the relator.
These paths determine elements W1, ... , w12 of A. Now for any A-module M,
H3(0; M) is isomorphic to M/IM, where I is the right ideal of Z generated
by the twelve elements 1 ± W1, ... , 1 ± W12, and the sign in 1 ± w, is positive
if the ith relator appears in figure 3 with the same orientation each time, and
is negative otherwise. In figure 3a, the two copies of the third relator meet at
their base points and have the same orientation. It follows that 1 + w3 = 2,
and hence that H3(A; M) is a quotient of M/2M. This completes the proof
of the statement. With a little more work it may be shown that I is equal
to the ideal of Zz generated by 2 and the augmentation ideal, which implies
that for any M,

H3(A; M) = Mo/2Mo.

We leave this as an exercise.

9. Further questions
1) We also used GAP [17] to try to find good presentations of various other
finite-index torsion-free subgroups of Coxeter groups. The examples that we
tried include:
a) The index sixteen subgroup r2 of the right-angled Coxeter group r de-
scribed in section 7. Comparison of the Euler characteristic (which is twice
that of r1i or eight) with the known minimum number of generators, together
with the fact that any K(r2i1) must have at least one 3-cell indicate that
the minimum number of relators in a presentation of r2 must be at least six-
teen. Using GAP we were able to get down only to an 8-generator 17-relator
presentation, but by hand (and then checking the result using GAP) we were
able to eliminate one of the relators. The sum of the lengths of the relators
in our presentation is 152. We found a CW-complex K(r2i1) having eight
1-cells, sixteen 2-cells and one 3-cell.
b) Other index eight normal subgroups of the Coxeter group r of Section 7. If
,b' is any homomorphism from r onto a product of three cyclic groups of order
two which restricts to an isomorphism on each maximal special subgroup of
r, then the kernel of z/" is a torsion-free index eight normal subgroup of r.
One way to create such a z// is to take 0 (the homomorphism given earlier,
with kernel rl) and modify it slightly. We did not find a,0' whose kernel had
a smaller presentation than the one given for r1.
c) Take figure 1, remove the vertex h and all edges leaving it, and add a new
edge between vertices i and k. Label the three boundary edges with the label



158 W. Dicks, I.J. Leary

three, and give all other edges the label two. This gives a presentation of a
ten-generator Coxeter system (A, V) such that K(0, V) is a triangulation of
the projective plane. A has torsion-free normal subgroups of index 24, and
clearly has no torsion-free subgroup of lower index, since it contains elements
of order three and subgroups isomorphic to C. The subgroup we looked at
required nine generators.
d) In [1] Bestvina pointed out that a finite-index torsion-free subgroup r1 of a
Coxeter group r such that K(r, v) is an acyclic 2-complex would have coho-
mological dimension two over any ring, but might not have a 2-dimensional
Eilenberg-Mac Lane space. (A famous conjecture of Eilenberg and Ganea
asserts that any group of cohomological dimension two has a 2-dimensional
Eilenberg-Mac Lane space [4].) Let K be the barycentric subdivision of the
acyclic 2-complex having five vertices, ten edges corresponding to the ten
pairs of vertices, and six pentagonal faces corresponding to a conjugacy class
in A5 of elements of order five. The simplicial complex K is full. If (r, v)
is the corresponding right-angled Coxeter system, then the easy extension of
Corollary 12 to polyhedral complexes shows that colouring K(r, V) by dimen-
sion gives rise to a torsion-free index eight normal subgroup r1 of r, requiring
exactly eighteen generators. The complex K(r, V) has 21 vertices, 80 edges
and 60 2-simplices, so by Chiswell's formula [7], the Euler characteristic of r1
is

X(r1)=8(1- 21+ 20- 80)=24.

Hence if a presentation for r1 could be found having twenty-three more rela-
tors than generators, the corresponding 2-complex would be a K(r1i 1). An
argument similar to that sketched in the proof of Proposition 4 shows that
there is a 3-dimensional K(r1i1) having exactly six 3-cells. Presentations
of r1 arising from this complex will have 29 more relators than generators.
Using GAP we found an 18-generator 52-relator presentation for r1, but were
unable to reduce the number of relators any further. The problem of whether
there exists a K(r1,1) with less than six 3-cells remains open.
2) The groups exhibited in Section 4 Example 2 (whose cohomological dimen-
sion over the integers is three and whose cohomological dimension over any
field is two) are finitely generated, but cannot be FP by Proposition 9. The
question of whether there can be similar examples which are FP(2) or even
finitely presented remains open.
3) The result proved in Proposition 14 does not really prove that the exam-
ples of Sections 7 and 8 are minimal, even in the sense of being finite-index
subgroups of Coxeter groups with the least possible number of generators. It
may be true that there can be no full simplicial complex having ten vertices
or fewer whose highest non-zero homology group is non-free, which would
suggest that no right-angled Coxeter group on less than eleven generators
can have different virtual cohomological dimensions over Z and Q.
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4) Is there a simpler example of a group whose cohomological dimension
over Z is finite and strictly greater than its cohomological dimension over Q
than the group Fl = A given in Sections 7 and 8? Applying the embedding
theorem of Higman-Neumann-Neumann to A we were able to construct a
2-generator 12-relator presentation of a group whose cohomological dimension
over any ring is equal to that of A. An Euler characteristic argument shows
that this group requires at least 12 relators. The total length of the 12 relators
we found was 1,130, so this group can hardly be said to be simpler than A.
The two distinct 8-generator 12-relator presentations for A given in Sections
7 and 8 have short relators (i.e., simple attaching maps for the 2-cells) and
a simple attaching map for the 3-cell respectively. Is it possible to make a
presentation for A in which each 2-cell occurs only twice in the boundary
of the 3-cell and such that the sum of the lengths of the relators is smaller
than 96 (the sum of the lengths of the relators in the presentation given in
Theorem 15)?
5) (P. H. Kropholler) Can there be a group r with cdf = 4 and cd0F = 2? No-
tice that taking direct products of copies of Bestvina's examples gives groups
with arbitrary finite differences between their cohomological dimensions over
Z and over Q.
6) What we call an R-homology manifold is really a simplicial R-homology
manifold. One could give a similar definition and an analogue of Theorem 5
and Corollary 6 for general (locally compact Hausdorf) topological spaces.
It may be the case that any torsion-free Poincare duality group over R acts
freely cocompactly and properly discontinuously on an orientable R-acyclic
R-homology manifold.
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Abstract. We compute for an odd prime p the p-primary part of the Farrell
cohomology of Out(Fp_,), the group of outer automorphisms of a free group
Fp_1 of rank p - 1. We also determine the p-period, Yagita invariant and
cohomological Krull dimension for automorphism groups of free groups.

0. Introduction

Let F. denote a free group of rank n, its automorphism group and
Out(Fn) the associated group of outer automorphisms. Recall that these
groups are of finite virtual cohomological dimension. The main purpose of
this note is to compute, for p a prime, the p-primary cohomology of Aut(Fp_1)
and Out(Fp_1) above the virtual cohomological dimension. It is convenient to
express our result in terms of Farrell cohomology. We shall write H' (r; z)p
for the p-primary part of the Farrell cohomology of a group r of finite vcd.

Theorem. Let p be an odd prime. Then

H`(Aut(Fp-1); Z)p - H'(Out(Fp-i); z)p N I'p[w, w-1],

with w of degree 2(p - 1).

Note that the mod p Farrell cohomology of these groups is periodic, implying
that the Krull dimension of the corresponding mod p cohomology rings equals
one. In Section 1 we will determine for general n the Krull dimension of the
mod p cohomology rings of Aut(F,,) and Out(F ); the result can be read
off from the work of Smillie and Vogtmann [SV2]. Section 2 is devoted to
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computing the Yagita invariant of these groups; it is interesting to compare
the result with the corresponding one for the case of mapping class groups
(cf. [GMX]). In the third Section we present the proof of the theorem stated
above; the interested reader should compare this result with the analogous
computation for the mapping class group r(p_l)/2 (cf. [X]) and for Glp_1(7G)
(cf. [A], [BE]).

We thank the referee for many valuable suggestions.

1. The Krull dimension

Recall that for a group 1:' of finite vcd the Krull dimension r,p(F) of the
mod p cohomology of r equals the maximal rank of an elementary Abelian
p-subgroup of F. Thus, if A --* F is a map of groups of finite vcd with
p-torsion-free kernel, one has np(A) < 1cp(F).
The natural map Out(FF) -a Gln(7G) has torsion-free kernel and thus

kp(Out(FF)) < ,cp(G1n(Z)).

It is well-known that the rank of a maximal elementary Abelian p-subgroup
of G1n(7G) is [p-`1], where [x] stands for the integral part of the real number x
(cf. Minkowski [M]).
The following theorem then follows from [SV2].

Theorem 1.1. For every prime p and n > 1 one has

icp(Aut(Fn)) = lcp(Out(Fn)) _ [h].
Proof Because the kernel of the natural map Aut(Fn) -* Out(Fn) is torsion-
free and in view of our discussion above, we have

icp(Aut(FF)) < l£p(Out(Fn)) C ,p(G1n(Z)) _ [].
It suffices therefore to show that (7G/p)m C Aut(Fm(p_1)). For this, we consider
the graph G(p) with 2 vertices, connected by p edges, so that 7r1G(p) = Fp_1.
Let Z/p act on G(p) by permuting the edges and fixing the vertices. This
action extends in an obvious way to an action of (7G/p)m on VmG(p), yielding
an injection

(Z/p)m -* Aut(7r1(VG(p))) - Aut(Fm(p_1)),
m

and the result follows.
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Remark. The whole symmetric group EP acts by automorphisms on the
graph G(p), fixing the two vertices. Furthermore, the symmetric group Em
acts on V,,,G(p) by permuting the copies of G(p) and fixing the basepoint.
One concludes that the wreath product EP f Em :_ (EP X X EP) X E. acts
on VmG(p) fixing the basepoint so that EP f Em C Aut(Fm(p_l)). Of course,
m and p can here be arbitrary integers > 1.

2. The Yagita invariant

Recall (see [Y]) that for a group r of finite vcd and prime p the Yagita
invariant p(F) is defined as the least common multiple of numbers 2m(7r),
where m(7r) is the largest number such that

H" (F; Z) r- im (res) C Z/p[um( )] C H' (ir; Z/p)

where it C F is a subgroup of order p and u E H2 (7r; Z/p) is a generator. (If
no such it C F exists, one puts p(F) = 1). It is obvious from the definition
that for any map A -+ F of groups of finite vcd with p-torsion-free kernel
one has p(A) I p(F). We also recall the well-known and elementary fact that
in case rcP(F) = 1, the Yagita invariant p(F) agrees with the p-period, that is,
it is equal to the smallest positive integer k such that

H`(F; Z)P - H'+k(r; Z)P Vi > vcd(F).

We call such a group p-periodic; it has periodic Farrell cohomology of period
p(F).

Definition. For x E R>° and p a prime we shall write [x]9 for the largest
power of p less than or equal to x; thus x = [x]P + y with [x]P = pm and
0<y<(p-1)pm.

Theorem 2.1. Let p be a prime and n > 1. Then

p(Aut(Fn)) = 2(p - 1) n[].P
Proof The natural maps Aut(Fn) -f Out(Fn) -+ Gln(Z) with torsion-free
kernels show that

p(Aut(Fn)) < p(Out(Fn)) < p(Gln(Z)).

From [GMX, Lemma 1.2] we infer that p(Gln(Z)) divides 2(p - 1) [Pnl]
P

(see

also [GLT] for more information concerning the Yagita invariant of a general
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linear group). It suffices therefore to find a finite subgroup o C with
p(a) > 2(p - 1) LPn ] . Let p'" Note that (p - 1)p"` < n and

1 P p -

Ep f Epm C Aut(F(p_l)pm) C

according to our remark at the end of section 1. We claim that p(EP f EP-)
is larger or equal to 2(p - 1)pm. Indeed, the normalizer of Z/p C Ep con-
tains the holomorph Hol(Z/p) of Z/p (i.e., the split extension of Z/p by its
automorphism group Aut(7G/p) ^_' Z/(p - 1). Clearly,

H*(Hol(Z/p); Z) = 7G[w]/pw with jwi = 2(p - 1).

Now consider Hol(Z/p) f Epm C Ep f Epm. The diagonal embedding

A : Z/p -* Hol(Z/p) x ... x Hol(Z/p) C Hol(Z/p) f Epm.

induces a restriction map

A* : H*(Hol(Z/p) f Epm; Z) -* H*(Hol(Z/p); 7G) C H*(Z/p; Z)

mapping into Z [WP- /pwPm. This can be seen by looking at the diagonal
restriction map

p* : H*(Hol(Z/p) x ... x Hol(7G/p);Z) -4 H*(Hol(7G/p);Z).

Because elements of odd degree are mapped to zero, p* factors through

H*(Hol(Z/p); Z) ® ... ® H*(Hol(Z/p); Z) = Z[w1, ... wpm]/p(w1i ... , wPm)

with each w; of degree 2(p-1) and (w1, ... , wpm) denoting the ideal generated
by these elements. But all elementary symmetric functions in the variables
W1 i , wpm map via p* to 0 so that the image of A* is contained in the
subalgebra generated by the image of IIw1, which is wPm. It follows that
p(EP f Epm) > 2(p - 1)p"', completing the proof.

Remark. Note that our proof shows that p(E,, f Epm) = 2(p - 1)p- and

p(Gln(Z)) = 2(p - 1)
Lp

n

P

As already mentioned, the Yagita invariant coincides with the p-period in
the p-periodic case, and a group of finite virtual cohomological dimension is
p-periodic if and only if its elementary Abelian p-subgroups are cyclic (cf.
Brown's book [B]).
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Corollary 2.2. Let p be an arbitrary prime and n > 1. Then the following
holds:

(i) Aut(FF) is p-periodic if and only if Out(FF) is.
(ii) Aut(FF) and Out(F,,) are p-periodic if and only if p - 1 < n < 2(p - 1).

(iii) If Aut(Fn) and Out(Fn) are p-periodic, their p-period equals 2(p - 1).

3. The p-primary cohomology

The complexity of the p-primary part of the cohomology of Aut(Fn) and
Out(Fn) is simplest in the p-periodic case. We will completely determine the
Farrell cohomology in the first case, that is, in case n = p - 1. The next two
cases, n = p and n = p + 1 respectively, will be considered in a forthcoming
paper (cf. [GM]). Since the Krull dimension of Aut(Fp_1), cp(Aut(Fp_1)),
equals one, the p-part of the Farrell cohomology of Aut(Fp_1) is given by (cf.
Brown's book [B])

H`(Aut(Fp_i); Z)p = fl H'(NA(C); Z)p
CEK

where K denotes a set of representatives of conjugacy classes of subgroups
C of order p of Aut(Fp_1), and NA(C) the normalizer of C C Aut(Fp_1).
Elements of order p in the automorphism group of a free group have been
classified in [DS]. In particular, if a E Aut(Fp_1) has order p, then according
to [DS] there exists a basis (x1, ) xp_1) of Fp_1 such that

xz+i, 1<i<p-1
xlx2...X,-,)-', i = p - 1.a(xi) =

Theorem 3.1. Let p be an odd prime. Then all elements of order p
in Aut(Fp_1) are conjugate. Moreover, if a E Aut(Fp_1) has order p then
NA((a)), the normalizer of the subgroup (a) generated by a in Aut(Fp_1), in-
jects into No((&)), the normalizer of the subgroup (a) generated by the image
& of a in Out(Fp_1).

Proof That the elements of order p in Aut(Fp_1) are conjugate follows from
the classification theorem cited above. If 0 lies in the kernel of NA((a)) -4
No((&)) then 0 is an inner automorphism of Fp_1i say 0(x) = txt-1, t E FF_1.
But, assuming that a has order p, OP-1 will centralize a so that O-' o a =
a o Op-' and therefore tp-'a(x)t'_p = a(tp-1)a(x)a(t'-p) for all x E Fp_1.
This shows that a(tp-') = tp-', because the center of Fp_1 is trivial for p > 2.
Hence tp-' E Fp°;, the group fixed by a, which is known to be a trivial group
([DS]). As a consequence, t = e E Fp_1i since Fp_1 is torsion-free, and we
conclude that NA((a)) -* No((a)) is injective.
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To establish the finiteness of the normalizers N, ((a)) for a as in Theorem
3.1, it suffices therefore to consider the normalizer No((a)) C Out(Fp_1).
For this we consider the spine K of the space introduced by Culler and
Vogtmann ([CV]), which was also used in [SV1]. It is a contractible (2n - 3)-
dimensional simplicial complex with vertices certain equivalence classes of
marked admissible graphs, and Out(Fn) acts on K simplicially with finite
stabilizers, such that if ry E Out(Fn) fixes a point x E K,,, then it fixes the
carrier of x pointwise. If C C Out(F,,) is any subgroup, the normalizer No (C)
acts on the fixed-point space K° and thus IC'

n
= {pt} implies that No(C) is

a finite group.

Theorem 3.2. Let p be an odd prime and C C Out(Fp_1) a subgroup of
order p. Then No(C), the normalizer of C in Out(Fp_1), is a finite group.

Proof The fixed point space AC is known to be contractible for any finite
subgroup G of Out(F ), see Krstic and Vogtmann [KV], or White [W]. In
particular, K 1 is non-empty and connected. We show that Kp 1 = {pt}
by showing that IC', 1 does not contain any 1-simplex of Kp_1. A vertex of
Kp_1 is represented by a pair (g, G), G an admissible graph of rank p - 1 and
g : R -> G a homotopy equivalence, where R is a rose (i.e., a graph with a
single vertex; see [SV1] for the notion and discussion of admissible graphs).
The admissible graph G associated with a vertex of )Cp_1 is unique up to
homeomorphism and is called the graph type of the vertex; the stabilizer of
the vertex is isomorphic to the automorphism group of the graph G (which
is the same as the group of components of the group of homeomorphisms of
G, since G is admissible). According to [SV1J, there is a unique graph of
rank p - 1 admitting an automorphism of order p (namely, the graph G(p)
considered in the previous section). On the other hand, the two vertices of a
1-simplex of Kp_1 have always distinct graph type (one is obtained from the
other by a forest collapse). Thus KP 1 contains no 1-simplex, which proves
that No (C) is finite.

We can now prove the first half of the Theorem of the introduction.

Theorem 3.3. If p is an odd prime then H*(Aut(Fp_1); Z)p = F, [w, w-1],
with w of degree 2(p - 1).

Proof We know from our earlier discussion that Aut(Fp_1) contains elements
of order p. By Theorem 3.1 we conclude that there is a unique conjugacy class
of subgroups of order p in Aut(Fp_1) and, if C is such a subgroup, the natural
map NA(C) -+ Aut(C) = Z/p - 1 is surjective. Since NA(C) is contained in
the finite group No(C), it injects via the natural map Aut(Fp_1) -> Glp_1(Z)
into Glp_1(Z), which by Minkowski's Theorem [M] does not contain any p-
subgroups of order larger than p. It follows that the p-Sylow subgroup of the
(finite) group NA(C) is cyclic of order p. Hence, NA(C) is a split extension
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of C by a finite group of order prime to p and one has therefore a natural
surjection onto the holomorph of C, NA(C) -4 C x Aut(C) _: Hol(C) with
finite kernel Q of order prime to p. In particular, this projection will induce
an isomorphism on the p-primary part of cohomology. Thus

H*(NA(C); Z)P - H*(Hol(C); Z)P - Z[w]/pw

with w of degree 2(p - 1). Moreover, we infer that

II*(Aut(Fp_1); Z)P - H*(NA(C); Z)P = n'P[w, w-1]

with w of degree 2(p - 1).

To obtain the corresponding result for Out(Fp_1), we first need to verify that
Out(Fp_1) contains just one conjugacy class of subgroups of order p. This
follows from the following Lemma.

Lemma 3.4. Let p be an odd prime. Every subgroup C C Out(Fp_1) of
order p lifts to a subgroup C C Aut(Fp_1) of order p.

Proof We make use of Zimmermann's Realization Theorem [Z], (see also
Culler [C]), which implies the following. Given C C Out(Fp_1) of order p,
there exists a finite, connected graph H containing a subgroup D C Aut(H)
of order p such that D maps onto C via an isomorphism 7r, (H) --+ F,-,. To
see that C lifts to a subgroup C C Aut(Fp_1) of order p, it suffices therefore
to check that the D-action on H has a fixed-point. For this, let f E D denote
a generator and consider f* : H1(H; Q) -+ Hl (H; Q). Since f maps to an
element of order p in Glp_1(Q) via the maps

Aut(H) -* Out(Fp_1) -+ Glp_1(Z) -* Glp_1(Q),

we conclude that the trace Tr(f*) = -1. We use here the well-known fact
that every matrix in Glp_1(Q) of order p has trace -1. It follows that the
Lefschetz number of f satisfies A(f) = 1 - (-1) = 2, and we conclude that
f : H -* H has a fixed-point.

Remark. The result that Out(Fp_1) contains only one conjugacy class of
subgroups of order p follows also immediately from the fact that there is only
one admissible graph of rank p - 1 on which the cyclic group of order p can
act ([SV2]), together with the Culler-Zimmermann realization theorem (loc.
cit.).

Theorem 3.5. Let p be an odd prime. Then H*(Out (Fp_1); Z)p - Fp [w, w-1]
with w of degree 2(p - 1).

Indeed, Out(Fp_1) contains a unique conjugacy class of subgroups of order p
and the normalizer No(C) of such a subgroup is a finite group, mapping onto
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Hol (C) with kernel of order prime to p. The rest of the argument is then
as in the proof for Theorem 3.3. Note, because vcd(Out(F )) = 2n - 3 (cf.
[CV]), Theorem 3.5 determines also the ordinary cohomology of Out(FP_1) in
degrees > 2p - 5.
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On Tychonoff Groups

R.I. Grigorchuk

1. Introduction

The class AG of amenable groups can be characterized by the property that
the group has a fixed point for any action by affine transformations on a
convex compact subset of a locally convex topological vector space.
Now let us suppose that instead of a compact set we have a nonzero cone.
What kind of fixed-point theorems may hold in this situation? There is
a number of conditions under which a selftransformation of a cone has a
nonzero fixed point. We will consider the situation when a group acts by
affine transformations on a convex cone with compact base. The groups for
which any such action has an invariant ray are called Tychonoff groups and
were defined by H. Furstenberg [5].
The Tychonoff property was also considered in [3,6] in the greater generality
of locally compact groups and used for the description of positive harmonic
functions on groups which contain closed nilpotent subgroups with compact
quotient.
In this paper we try to attract the attention of the reader to Tychonoff groups
again, and begin the systematic investigation of abstract Tychonoff groups
(with the discrete topology).
Among other observations we show that the class of Tychonoff groups is closed
under the operations of taking factor groups and direct limits, but it is not
closed under taking subgroups. It is also not closed with respect to extensions
but some sufficient conditions for a semidirect product of Tychonoff groups
to be Tychonoff are given.
Groups with the Margulis property (every positive p-harmonic function is
constant on the cosets of the commutator subgroup) are Tychonoff but not
every Tychonoff group has this property.

The results presented here were obtained under the financial support of the Russian Fund
for Fundamental Research Grants 93-01-00239, 94-01-00820.
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Using arguments of Margulis we extend the Margulis theorem about positive
harmonic functions from the class of nilpotent groups to the class of ZA-
groups and from finitary probability distributions to arbitrary such distribu-
tions. We show that for nilpotent groups the Tychonoff property is equivalent
to the Margulis property.
Infinite, finitely generated Tychonoff groups are indicable (i.e. they can be
mapped onto the infinite cyclic group) and have some other interesting prop-
erties.
At the end of the paper we consider bounded actions of groups of subexpo-
nential growth on convex cones with compact base and prove a fixed-point
theorem for such actions.

2. The definition and some properties of Tychonoff groups

Let us recall some notions. A selfmap A : E -> E of a topological vector
space E is called affine on a convex subset V C E if for any x, y E V and
p, q > 0, with p + q = 1, A(px + qy) = pAx + qAy.
A set K C E is called a cone if
1. K+KCK
2. AK C K for any number .A > 0
3. K n (-K) = {0}.
The ray in a cone K is any halfline Lx = {Ax : A > 0}, where x E K, x # 0.
A cone K has a compact base if there is a continuous linear functional 1 on
E such that (b(x) > 0, if x E K, x # 0 and such that the set B = {x E K :
(D(x) = 1} is compact. Any such set B is called the base of the cone K.

Definition 2.1. A group G is called Tychonoff if for any action of G by
continuous affine transformations on a convex cone K with compact base in
a locally convex topological vector space there is a G-invariant ray.

Let TG be the class of Tychonoff groups. We will see later that TG C AG.
Throughout this paper K denotes a cone with compact base B determined
by a functional D.

Examples

2.2. Any finite group is Tychonoff.

If a finite group G acts on a cone K then for any x E K, x # 0 the nonzero
point

=GEgx
SEC

is G-invariant and so the ray L{ is G-invariant as well.



172 R.I. Grigorchuk

2.3. The infinite cyclic group Z is Tychonoff.

If A : K -* K is the affine transformation determined by the generator
element of a cyclic group, then the transformation

A:B-*B
A(x)A(x _)

'D (A(x))

is continuous and by Tychonoff's theorem it has a fixed point E B. The
ray L£ is 7G-invariant.
Later we will see that nilpotent and in particular commutative groups are
Tychonoff. The following example shows that a virtually commutative group
is not necessarily Tychonoff.

2.4. The infinite dihedral group is not Tychonoff.

This group is given by one of the following presentations (by means of gen-
erators and relations):

G=<a,bla2=b2=1>
=<a,cla2=(ac)2=1>

where b = ac. Hence G is isomorphic to the group generated by matrices

(1)

A= (°
0C= (I2

0

o)which acts by linear transformations on 2-dimensional vector space. The first
quarter

K={(x,y) E1182 :x,y> 0}

is G-invariant and has compact base. It is easy to see that there are no
invariant rays for this action.

Proposition 2.5. A factor group of a Tychonoff group is Tychonoff.

This is obvious.

Proposition 2.6. Let G be a directed (by inclusion) union of Tychonoff
groups H;, i E I (that is G = Ui H; and for any Hi and H; there is
Hk D (H;UH;)). ThenG ETG.

Proof. Let G act by affine transformations on a cone K with compact base
B and let B. be the compact nonempty set of traces of G;-invariant rays
on the base B so that B. = {x E B : gx = )9x, g E G;, A, > 0}. The
system {B;}=EJ satisfies the finite intersection property and so the intersection
B = f1;EIB, is nonempty. Any x E B. determines a G-invariant ray L.
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The next statement was remarked in [5].

Proposition 2.7. The strict inclusion TG C AG holds.

Proof. Let us prove that TG is a subset of AG. Let l.,,(G) be the space of
bounded functions on G with uniform norm, 1, (G) be the space of continuous
functionals equipped by the weak-* topology and let B C 100* (G) be the set
of means on G that is the set of linear positive functionals m E l;,(G) such
that m(1G) = 1, where 1G is constant on G with value 1.
Now let K be the cone generated by B:

K={0} U{xEl ,(G):AxEB for some A>0}.
Then B is the base of cone K, determined by the functional given by
-t(m) = m(1G), m E l;.(G).
By the Alaoglu theorem this base is compact in the weak-* topology. The
group G acts on l,,.(G) by left shifts: (L9 f) (x) = f (g-'x) and this action
in a canonical way induces the action on the conjugated space: (gm) (f) _
m(L9 f ), m E
The cone K is G-invariant, so there is a G-invariant ray Lx, x E K, x # 0.
But the base B is G-invariant as well. Thus m = B fl L. is an invariant point
for the action of G and m is a left invariant mean on G. So G E AG. The
inclusion TG C AG is strict, because the infinite dihedral group is amenable
but not Tychonoff.

An extension of one Tychonoff group by another need not be a Tychonoff
group, as the example of the infinite dihedral group shows.
A subgroup of a Tychonoff group also need not be Tychonoff. The corre-
sponding example will be constructed later.
However, a subgroup of finite index in a Tychonoff group is Tychonoff [3], [6].
Now we are going to consider some types of extensions preserving the Ty-
chonoff property.

Proposition 2.8. Let G = M x N, where M, N E TG. Then G E TG.

Proof. Let G act on K with base B and let B0 C B be the nonempty
subset determined by the traces of M-invariant rays on B. Let xo E Bo and
mxo = \(m)xo, m E M, where A : M -+ 1 is some homomorphism. We
define Ko as a (nonzero convex closed) subcone of K consisting of vectors
x with the property mx = A(m)x. The cone Ko is N-invariant. Really, if
x E Ko then mnx = nmx = A(m)nx. Because N E TG there is N-invariant
ray LC which is G-invariant as well.

Corollary 2.9. Every commutative group is Tychonoff.

Let us agree that in this paper by a character of a group G we mean any
homomorphism G -+ IR+ where Rf is the multiplicative group of positive
real numbers.
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Proposition 2.10. Let G = Z xa Z' be a semidirect product of the infinite
cyclic group Z and a free abelian group of rank d > 2, where a generator of
Z acts on Zd as the automorphism determined by a matrix A E GLn(Z) with
the following condition: A has no eigenvalues on the unit circle other than 1.
Then G E TG.

Proof. Let G act on K with compact base B determined by a functional
(D. Because V E TG there is a vector t; E B such that for some character
cp : Zd --* I and any g E Zd the equality ge = cp(g)6 holds.
Let K,, = {x E K : gx = cp(g)x, g E Zd}. Then K. is convex subcone of K
determined by some nonempty compact base B. C B.
If a is a generator of the infinite cyclic group Z then aK,, = K,,a, where the
action of a on cp is determined by the relation °(g) = cp(g-lag).
For any b E Zd and x E K,, we have bgx = gg-lbgx = cp(g-lbg)gx and so we
have uniform on n E Z upper bound:

cP(a-nban) =
(D(ba n.)

C sup
'D(Y)

< 00.,(

We see that for any b E Z' the sequence p°° (b) when n ranges over Z is
bounded. Let us prove that cp is invariant under A.
Let al, , ad be the basis of the group Zd . Any character on Zd is determined
by the vector (Xi, . , Xd) of positive numbers: if g = am', . . . , add then
X(g) = Xi`1, ... , Xd d.

Denote by u the additive character p = log X, µ(g) = m, log X, + +
and log Xd. The action of an automorphism a on V corresponds to the map-
ping m -* mA of integer vectors m = (m,, , md) which determines ele-
ments of the group 7Gd. Thus µ°° (g) = min) log X, + + mdn) log Xd, where

(n) fin) n(ml I and ) _ (mi, ... md)A and

, /an (g)
_ < log x, mAn > = < log X(A')n, m >

where <, > is scalar product and A' is the matrix transpose to A.

Lemma 2.11. Let A be a linear transformation of Rd which has no eigen-
values on the unit circle not equal to 1. If for some x the set of vectors
{Anx}+,_°° . is bounded then Ax = x.

The proof is identical to the proof of lemma 4.1 from [5] and is omitted.
If the sequence of vectors {log cp(A')n}n_° , (cp is the character defined
above) is bounded then due to Lemma 2.11 and the condition of Proposition
2.10 the vector log cp is invariant with respect to A'. Thus cp is a-invariant
and so the cone K, is a-invariant. An arbitrary a-invariant ray in K,, will be
G-invariant as well.
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The following three statements are similar to the one given above.

Proposition 2.12. Let G = N x H be a semidirect product, where N and
H are Tychonoff and let N act trivially on the set of characters of the group
H. Then G E TG.

Proof. The cone K,, = {x E k : gx = V(g)x, g E H}, where co is a
character for which there is a vector E K, 54 0, with g = v(g)l; for
any g E H is N-invariant and therefore any N-invariant ray in K,, will be
G-invariant.

There is a bijective correspondence (given by the function log) between mul-
tiplicative characters G -a R+ and additive characters G -+ R. We say
that the set of multiplicative characters G -* R. is finite dimensional if the
space Char (G) of additive characters G -+ R is finite dimensional.

Proposition 2.13. Let G = Z V AH, where H E TG. Suppose that the space
Char (H) is finite dimensional and the matrix A determining the action of
generator of Z on the space Char (H) has no eigenvalues on the unit circle
other than 1. Then G E TG.

The arguments are similar to those given in the proof of Proposition 2.12.

Examples

2.14. The Metabelian group G =< a, bla-'ba = b2 > is Tychonoff.

Proof. The group G is isomorphic to a semi-direct product 7L v H, where
Z is the infinite cyclic group generated by the element a and H is the group
of rational numbers of the forma k, n E Z with the operation of addition.
The element a acts on H as multiplication by 2.
Any character cp on H is determined by the value cp(1) so the space of char-
acters is 1-dimensional. We have Wan

(g) = (2"g) [,(g)]2n and thus the
orbit {cp°°(g)}n°° is bounded if and only if W(g) = 1 and if this holds for
any g then cp is trivial. Thus G E TG.

2.15. Let Zk = Z/kZ, G = ZdwrZk (wr means the wreath product). The
group G can be defined as G = 7Ld x (Zk)Zd, where the group Zd acts on the
space (Zk)Zd of 7Gk-configurations on 7Gd by shifts.

The group Zr has only the trivial character. Thus G E TG.

2.16. The group ZwrZ is not Tychonoff, because it can be mapped onto the
infinite dihedral group.
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2.17. The Tychonoff property may not be preserved when passing to a sub-
group.

Proof. Let H = < a, bI [a, b] = c, [a, c] = [b, c] = 1 > be the nilpotent
Heisenberg group and let the automorphism cp E AutH be defined by

nI a->ab
b -* a.

Then cp induces an automorphism of the group Z2 = H/[H, H] determined
by the matrix

A=
(1 1)
1 0 '

the eigenvalues of which A1,2 = (1 ± v)/2 do not belong to the unit circle.
The automorphism cp acts on the generator c of the center Z(H), as c =
[a, b] - [b, a] = c''. Let

G=Zv,,H
= < a, b, c, d [a, b] = c, [a, c] = [b, c] = 1, d-' ad = ab, d-' bd = a >

By Proposition 2.13 the group G is Tychonoff. At the same time G contains
the subgroup < c, d Id-'cd = c-' > which can be mapped onto the infinite
dihedral group < x, y Ix2 = y2 = 1 > by the map c H xy, d H x, and so is
not Tychonoff.

3. Harmonic functions and the Tychonoff property

Let G be a countable group and p(g) be a probability distribution on
G:p(9)?0, E9EGp(9)=1.
A function f : G -+ 1[l; is called p-harmonic (p is a real number) if P f = U f ,

where P is the Markovian operator determined by the relation:

(Pf)(9) = E p(h) f (9h)
hEG

The left shift of a p-harmonic function is again a p-harmonic function. If
p = 1 then we get the standard notion of a harmonic function.
A distribution p(g) is called generating if its support suppp(g) = {g E G
p(g) # 0} generates G.

Proposition 3.1. If given G there is a generating probability distribution
with finite support such that for any p > 0 every positive p-harmonic function
is constant on cosets of the commutator subgroup then G is Tychonoff.

Proof. It follows from the assumption that every bounded harmonic function
on G is a constant and this implies the amenability of G by the theorem of
Azencoff and Guivarc'h [2].
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Let p(g) be a distribution on G for which every p-harmonic function is con-
stant on the cosets of the commutator subgroup when p > 0 and let G act
by affine transformations on a cone K with compact base B determined by
the functional fi.
We can define affine continuous mapping T : K -+ K,

Tx = E p(g)gx
gEG

for which there is an invariant ray Lt, 1; E B. Assume that T6 = p.
The function f (g) = I is positive and p-harmonic:

(Pf)(g) = Ep(h)f(gh) _ E
hEG hEG

= 41)(g E pf (g)
hEG

By our assumption, this function is constant on cosets of the commutator
subgroup. In particular, f (g) = 1 if g E G' = [G, G]. Thus the G'-orbit of
the point belongs to the base B.
We can consider the action of G' on the convex closure of the orbit {gt;}gEG'
and use the amenability of G' to claim the existence of a G'-invariant point
77
E B.

Now let K' C K be the nonempty convex closed cone of G'-fixed points. The
cone K' is G-invariant. Thus the action of G'on K' induces the action of
Gab = G/G' on K' by affine transformations. This action has an invariant
ray which is G-invariant as well.

Definition 3.2. A group G is a ZA-group if G has an increasing transfinite
central chain of normal subgroups

1=G1<...<G0<...<G,.=G (2)

where GA = Ua<,,G, if A is a limit ordinal and for any a, Go+1 /Gc, < Z(G/Ga)
(as usual Z(H) denotes the center of a group H).

The following statement is similar to the main result of [9] and our proof
follows the one given in [9]. We observe only that lemma 2 of [9] must be
slightly modified, either in part of the formulation or in part of the proof, and
that the condition on the probability distribution to have a finite support that
was included in the formulation of the theorem in [9] can be omitted.
Let us say that G has the Margulis property if for any generating probabil-
ity distribution p(g) and any p > 0, every positive p-harmonic function is
constant on cosets of the commutator subgroup.

Theorem 3.3. Any countable ZA-group has the Margulis property.
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Corollary 3.4. Any nilpotent group is Tychonoff and so any locally nilpotent
group is Tychonoff as well.

Remark 3.5. By a theorem of A. Malcev [5] any finitely generated ZA-
group is nilpotent. Thus ZA is a proper sub-class of the class of locally
nilpotent groups. It is not known if every locally nilpotent group has the
Margulis property.
There is a number of direct proofs that nilpotent groups are Tychonoff. The
first one was given in [3,6]. The arguments used in [6] can be applied for prov-
ing Theorem 3.3 but under the assumption that p(g) has finite support. using
the Tychonoff property of nilpotent groups. On the other hand the adapted
Margulis proof given below uses only the Tychonoff fixed-point theorem, and
works in the case of any distribution p(g).

Proof of Theorem 3.3 Let p(g) be the generating distribution on the ZA-
group G and for some a > 0 let the set of p-harmonic functions be nonempty.
We fix this p and denote by K the convex cone of positive p-subharmonic
functions that is functions with the property P f < p f . The first step of
our considerations is to get the analogue of the Martin representation for
p-harmonic functions.

Let V (G) be the space of real valued functions on G endowed with the topol-
ogy of pointwise convergence. If fn E K, n E N is a net and fn --3 f
then

Pf <lirPfn plimfn=µf.n _ n

Thus the cone K C V (G) is closed.
Let 1 be the functional on V (G) determined by the relation 1(f) = f (1).
Then the base B = If E K : D (f) = 11 is a compact set because from
P f < p f it is easy to deduce that

Pn

f(9) C h(9t)...p(9n) (3)

where the elements g;, i = 1, , n are selected in such a manner that
g=gl...gnandp(9:)>0, i=1,...,n.

From (3) it follows that all functions from B are majorized by the function
from the right-hand side of (3), which gives the compactness of B.
We can introduce the partial ordering on the cone K : x < y, x, y E K
if y - x E K. Then the cone K is a lattice: for any x, y E K there is an
infimum z = inf(x, y) that is the element such that x - z, y - z E K and if
x-z',y-z' E K forsome otherz' EK then z-z' E K.
In our case z is determined by the relation z(g) = min{x(g), y(g)}. The
following statement follows from theorem of Choquet and Deny and is a part
of a more general statement from [5] (theorem 6.2).
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Proposition 3.6. The set E of extremal points of B is a Borel set and any
point b E B is a resultant of some unique probabilistic measure dv defined on
E; i.e. b can be presented in the form

b = f xdv(x).
E

If f is a p-harmonic function then the corresponding measure dv is concen-
trated on p-harmonic functions. Indeed, let f be p-harmonic and

f = f xdvf(x).

Then

and
0

Pxdv f (x)P f < f
E

Pf - pf < fE(Px - px)dvf(x).

But Px - px < 0, so for any g E G the set

F9={xEE: (Px-px)(g)=0}
has vf-measure 1 and thus

vf(I I Fs)=1
gEG

because G is countable.
Now we are going to characterize extremal p-harmonic functions as characters
of the group G. Any such function will be denoted by k(x).

Lemma 3.7. If z E Z(G) then

k(xz) = k(x)k(z). (4)

Proof. Since the left shift of p-harmonic function is again p-harmonic and z
is an element of the center we get the relation

k(x) = kp -, )) +
where the function c is defined as c(xz) = k(x) - bk(xz), the number b is
selected to satisfy the inequality

0<b< k(x)
k(xz)

and p = bk(z), q = 1 - p.
Now we observe that the functions

k(xz) c(xz)

k(z) ' c(z)

belong to B and as k is an extremal point, k coincides with each of these
functions and this leads to (4).
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Lemma 3.8. Let x, y E G and z = [x, y] E Z(G). Then k(z) = 1.

Proof. If [x1, y], [x2, y] E Z(G) then [x1x2, y] = [x1, y][x2, y] E Z(G). This
shows that if [x, y] E Z(G) then [x", y] = [x, y]" E Z(G).
Let K be the closed cone generated by functions k(y"x), n E Z, let the base
B be defined as B = { f E K : f (1) = 1} and let T,, be the continuous map
from K to K, which preserves B and is defined by

(T,f)(x) = f(yx)
f(y)

Every function h E K satisfies the relation h(xz) = h(x)k(z), when z E Z(G).
By a theorem of Tychonoff there is h E K such that Th = h, that is
h(x)h(y) = h(yx) for any x E G.
Besides this there is a constant b > 0 such that for any n E Z, the inequality

0 < b <
h(x"y)
h(x")

holds. Since x"y = yx"[x", y], h(x"y) = h(yx")k([x, y]") = h(yx")k"([x, y]),
and we get for any n E Z

k" ([x, y]) = h(x"y) = h(x"y) b

h(yx") h(y)h(x") > h(y)

This leads to the inequality k([x, y]) > 1, which holds for any X, Y E G.
Therefore k([x, y]) = 1.

Now let us finish the proof of the theorem. For this purpose we will prove
by transfinite induction on a that k(x) is constant on cosets of the subgroup
[G, G,,] < G.
Let (2) be a central series of a group G. If x E G, y E G3 then [x, y] E G2 <
Z(G) and by Lemma 3.8 k([x, y]) = 1. So k is equal to 1 on the subgroup
[G, G3] and by Lemma 3.7 k is constant on cosets of [G, G3].
Let us pass from (1) to the central series of "smaller" length:

1 < G3/[G, G3] < ... < Ga/[G, G3] < ... < G/[G, G3]

After such factorization the distribution p(g) on G will be projected on some
distribution p(3) (g) on the group G(3) = G/[G, G3] and the function k will
be projected on positive µ-harmonic with respect to the distribution p(3) (g)
function k(3) on the group G(3). Moreover, k(3) will be an extremal point in
the base of the corresponding cone of p-harmonic function on G(3).
Let us suppose now, that for some ordinal A every positive p-harmonic func-
tion on G is constant on cosets of any subgroup [G, Ga] a < A. In case A is a
limit ordinal this property can be extended on cosets of the subgroup [G, GA]
as well.
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If A is not a limit ordinal and A = p + 1 then let us consider the central series

1 < G/[G, G"] < GA/[G, G"] < < G/[G, G,,]. (5)

Let p6") (g) and k(") be a distribution and p-harmonic function on G01) _
G/[G, G"] that are projections of p and k respectively.
If x E G'"), y E GA/[G, G9] then

[x, y] E G"/[G, G"] < Z(G/[G, G"])

and so the function 0) is constant on cosets of the subgroup

[G/[G, G"], GA/[G, G]] < G/[G, G"]

Thus we can pass from (5) to the series 1 < GA/[G, GA] < < G/[G, GA]
and define on the group G(") = G/[G, GA] projections p(-\) (g) and k(A) of p(g),
k respectively.
This gives the possibility to apply the inductive assumption and to prove the
theorem.

Remark 3.9. The space of p-harmonic functions on a group G with the
Margulis property can be identified with the space of p-harmonic functions
on the abelianization Gab and extremal p-harmonic functions are characters
in this case. In particular, every bounded harmonic function is constant.

Remark 3.10 There are examples showing that a group containing a nilpo-
tent subgroup of finite index can have extremal p-harmonic functions that
are not characters. Here is the simplest one.

Let G be the infinite dihedral group, given by the presentation (1) and the
distribution p be uniform on the set {a, b} of generators: p(a) = p(b) = 2. The
elements of G can be identified with words over the alphabet {a, b} which do
not contain the subwords aa, bb.
The Cayley graph of G looks like the Cayley graph of the infinite cyclic group

. 0
bab ba b 1 a ab aba

and the Markovian operator T acts on functions on G analogously to the
operator t on the group Z, where (T f)(n) = 1/2(f (n - 1) + f (n + 1)).
Extremal rays of the cone of positive solutions of the equation T f = 11f,
p > 1, have the form fi(n) = fn where is some positive number satisfying
the equation

S

{g n =
1(tn-1 + n+l),

2

i.e. -p± p2-1
2
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Respectively the function fi(g) = °W, where a(g) is the length of an element
g taken with the sign + if irreducible form of g starts on a and taken with
the sign - otherwise, is an extremal /t-harmonic function on G but is not a
character.

Remark 3.11 There are groups with the Tychonoff property having noncon-
stant bounded harmonic functions. For instance, any group G = Vwr7Gk is
Tychonoff (see Example 2.15) and has nonconstant bounded harmonic func-
tions when d > 3 [7]. Thus the class TG does not coincide with the class of
groups for which every bounded harmonic function is constant.

4. The Tychonoff property and indicability

A group is called indicable if it can be mapped onto the infinite cyclic group.

Theorem 4.1. Any infinite, finitely generated Tychonoff group is indicable.

Proof. Let G be such a group. The theorem will be proven if we construct an
action of G without fixed points by affine transformations on convex cone K
with compact base B. Indeed, then the action of G on any fixed ray E B
given by ge = p(g) determines the desired homomorphism cp : G -> 11
with infinite cyclic image.
We need to show that the cone K of positive µ-harmonic functions satisfies
the required property where p is any fixed number greater than 1 and the
distribution p(g) has a finite support which generates G. This follows, for
instance, from general results on Markov chains [10]. For the convenience of
the reader we include the proof of this fact in this special case.
The group G acts on K by left shifts. This action is affine and has no nonzero
fixed points. The same arguments which were given in the proof of Theorem
3.3 show that the base B = If E K : f (1) = 1} is compact in the topology
of pointwise convergence. Thus the only point remaining is to prove that the
cone K is nonzero.
Let p(g) be a distribution on G with finite support A which generates G.
Let p(n, x, y) be the probability of transmission from x to y in n steps in a
right random walk on G, determined by distribution p(g): starting from x we
can reach xa in one step with probability p(a). The Markovian operator P
corresponding to this random walk is determined by the relations:

(P.f)(x) = Ep(y)f(xy) = >p(1,x,y)f(y)
yEG yEG

For any A, JAI < 1 the series

9'(x, y) _ )" p(n, x, y)00
n=0
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converges and we can define the generalized Martin's kernels

a 9A(x, y)

ks(x) 9A(1,y)

and functions
00

IIy (x) - A'f (z, x, y),
i=0

where f (i, x, y) is the probability of first getting from x into y on the ith step.
It is clear that p(n, x, y) = >n 0 f (i, x, y)p(n - i, y, y) and so gA(x, y) _
IIA(x)gA(y, y) because

E )np(n, x, y) = F an E f (i, x, y)p(n - i, y, y)
n=0 n=0 i=0

00 n

Thus

= 1: 1: .'f (i, x, y)\n-ip(n - i, y, y)
n=0 i=0
00 00

_ F A'f (z, x, y) > )tn-ip(n
- i, y, y) = IIy, (x)9A (y, y)

i=o n=i

k (x) = LIa(1)U

Ib( )
Lemma 4.2. The following equality

holds.

0
ky (x) - .Pk (x)

if x5y
ifx=y

Proof. First of all observe that

1
Pky (x) F p(1, x, h)g'' (h, g)

9 (1, y) hEG
00

p(l, x, h) A'pn, h, y)
9A Y) hEG n=o

()
1

00

E An p(1, x, h)p(n, h, y)
9a(1, y) n=0 hE9

1

1 Anp(n+1,x,y)
n=o

_ 1
f1

1

9''(1, y)
(x, y) - p(0, x, y)] .

We claim that when x and A are fixed the set of numbers {k'(x),
is bounded.

y E G}



184 R.I. Grigorchuk

Indeed let A = supp(g) be the set of generators of G, and CG be the Cayley
graph of the group G constructed with respect to the generating set A.
For every element x E G, fix a path lx in CG that joins 1 and x. Let p(lx)
be the probability of the path lx (the product of probabilities of transmission
along links of this path) and let tx be the length of lx.
If y V lx, then f (i, 1, y) >\\ p(lx) f (i - tx, x, y). Therefore

.V_tx f (i - tx, x, y) < 1

)`f (2, 1, y) At-p(lx)

and

P H (x) _ E o'f'f (i, x, y)
k ' (x)

1 P( 1 )
Y i=E - , )'f ('i, 1, y)

< E°_-o A'f (i, x, y) < 1

E, Az+tx f (i + tx, 1, y) At-p(lx)

Thus the set of functions {k (x)}YEG is majorized by the function (Atxp(lx))-1.
Now we take any sequence yn E G, yn -+ oo and extract a subsequence
Ynk such that the sequence kYn converges to some positive function kA (x)

k

which is !-harmonic. Since the distribution p(g) has finite support, PkA(x) _
P limk4OO kbnk (x) = limk, Pkynk (x), and passing to the limit in the relation

1 (x) - Pl'\ ( )

0, if x ynk

A Ynk onk x =
A9A(1,v-k)' if x = ynk

we get the relation

I ka(x) PkA(x).

We have proven that on any infinite finitely generated group for any p > 1
there is a positive p-harmonic function. The cone of such functions is nonzero
and satisfies all necessary conditions. The theorem is proven.

5. A fixed-point theorem for actions on cones

Let a group G act by affine transformations on a cone K. We shall call such
an action bounded if the orbit of any point t; E K is bounded. Thus the
orbits can accumulate to zero, but not to infinity.
A finitely generated group G is called a group of subexponential growth if

ry = 1 m n ,y(n) = 1,

where 'y(n) is the growth function of the group G with respect to some finite
system of generators (ry(n) is equal to the number of elements of G that can
be presented as a product of < n of generators and its inverses).
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Theorem 5.1. Let G be a group of subexponential growth acting by affine
transformations on a nonzero convex cone K with compact base in a locally
convex topological vector space, and suppose that this action is bounded. Then
there is a G-fixed point l; E K, l; 0 0.

Proof. Let p(g) be a symmetric (that is p(g) = p(g-1) for any g E G)
probability distribution the support of which is finite and generates G, and
let P be the corresponding Markovian operator

(Pf)(g) = E p(h) f (gh)
hEG

We can define a continuous map T : K -* K by

Tx = E p(h)hx.
hEG

By the Tychonoff theorem there is a T-invariant ray L{, E B, that is T
A for some A > 0.
We are going to prove that A = 1. Let be a functional determining the
base B of the cone K and let f be a function on G determined by the relation
f (g) = 4 Then f is A-harmonic as shown in the proof of Proposition 3.1.
From the relation (Pn f)(1) = An f (1) we get the inequality p(n, 1, 1) _< A'
where p(n, 1, 1) is the probability of returning to the unit after n-steps in the
right random walk on a group G.
It is well-known that any group of subexponential growth is amenable and
by a theorem of H. Kesten the spectral radius

r = lim sup " p(n,1,1)n
is equal to 1 for a symmetric random walk on any amenable group. Thus
A > 1 in our case. But because the action of G on K is bounded, one can
find a number d > 0 such that 4(f) An = (D(Pn f) < d when n > 1, which
leads to the equality A = 1. Thus the function f (g) is a bounded harmonic
function on the group G.
By the theorem of Avez [1] the function f is constant and so the orbit Ot of
the point is a subset of the base B. The closed convex hull Ot of the orbit
Oe will be a compact set on which G acts by affine transformations, and this
action has a fixed point because G is amenable. This finishes the proof of the
theorem.

Remark 5.2. The statement of Theorem 5.1 holds for any group for which
there is a symmetric probability distribution with finite support having the
property that every positive bounded harmonic function is constant. There
are some solvable groups of exponential growth having this property. The
simplest example would be the group of the form Z X A Zd where not all
eigenvalues of the matrix A lie on the unit circle.



186 R.I. Grigorcchuk

6. Final remarks and open questions

The notion of Tychonoff group can be naturally generalized as follows.

Definition 6.1. A group G is called k-Tychonoff if for any action of G by
continuous affine transformations on a convex cone with compact base in a
locally convex topological vector space there is a convex G-invariant cone with
< k extremal rays. Hence 1-Tychonoff is the same as Tychonoff. A group
has the generalized Tychonoff property if it has the k-Tychonoff property for
some k > 1.

A group containing a Tychonoff subgroup of finite index has the generalized
Tychonoff property.
Some of the statements given above for Tychonoff groups can be proven for
generalized Tychonoff groups as well.
There are many open questions about Tychonoff groups. Here are two of
them.

Problem 6.2. Is it true that every Tychonoff group belongs to the class
E G of elementary amenable groups (that is groups that can be obtained from
finite and commutative groups by operations of extension and direct limit)?

Remark 6.3. Problem 7 in the Problem Session of [4] is stated incorrectly.
The correct question is given in Problem 6.2.

Problem 6.4. To describe solvable Tychonoff groups.

Remark 6.5. The description of polycyclic Tychonoff groups was given by
A. Starkov [11].
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Word Growth of Coxeter Groups
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Let (W, S) be a Coxeter system, Wx (t) the growth series of the subgroup
Wx = (X) of W for X C_ S, and 2(S) the length of the unique longest word
in W when the latter is finite. Then the famous formula of Bourbaki ([2],
Exercise 26, p.45; see also [4]) asserts that

E (-1)1X1 - tt(s)

xcs WX(t) WS(t)

when W = (S) is finite, and is zero otherwise. A proof of this formula is to
be found in [3].
Since the list of finite Coxeter groups is short and well known (see [1], which
also lists the corresponding values of 2(S)), it would be advantageous to have
a formula for computing Ws(t) in terms of only the finite subgroups (X) of
W, X C S. Such a formula can be obtained by a simple purely combinatorial
device as follows.
We evaluate the double sum (over Y and X)

(-1)1X1(-1)IYI(t) -
xcYcs wX(t)

in two different ways.

(2) Dt) = (-1)11'1
NTx(It)I

Ycs,

(ii) (t) _ (-1)Ixi (-1)IYI _ 1

xcs WX(t) xcres Ws(t)

since the inner sum (over Y, X C Y C S) is ± the alternating sum of the
IS - I-row of Pascal's triangle, which is 0 unless X = S, and (-1)IsI in this
case.
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Proposition. Let (W, S) be a Coxeter system and let £(Y) denote the length
of the unique longest word in Wy for all Y C S with WYI < oo. Then

t)

Ws(t) Ycs, I<o ( WY

IYIt

()
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Poly-surface Groups
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Abstract. Cocompact lattices in linear semisimple Lie groups have a number
of desirable properties; in particular, they are (I) residually finite; (II) satisfy
the Tits' alternative; (III) are virtually Poincare Duality groups of type FL;
(IV) admit, up to commensurability, a unique decomposition into irreducibles,
of which there are infinitely many; (V) act properly discontinuously with
compact quotient on a Euclidean space endowed with some non-euclidean
geometry; (VI) satisfy a finite rigidity property.
In this paper we compare this behaviour with that of a collection of Poincare
Duality groups which are in general not cocompact lattices, namely the class
of poly-Surface groups. We show that properties (I)-(IV) are satisfied without
change, and that (V) is virtually satisfied. For poly-Surface groups, the finite
rigidity property seems rather difficult to analyse because of our ignorance
of the various geometries which arise; nevertheless, for each n > 2, there
are infinitely many distinct commensurability classes of poly-Surface groups
which act as discrete cocompact isometry groups on bounded domains in C".

1. Preliminaries on Surface groups

By a Surface group (or S-group, for short) we shall mean the fundamental
group of a closed orientable surface of genus g > 2; that is, a group having a
presentation of the form

Eg = (Xl) ... , X29 :
][Ii9-1

[X2i-1, X2i])

Alternatively, the uniformisation theory of complex curves allows us to regard
S-groups as torsion free discrete cocompact subgroups in PSL2(R). A sub-
group of finite index in an S-group is also an S-group with genus determined
by the following:
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Theorem 1.1. (Riemann-Hurwitz) If G is an S-group of genus g, and H is
a subgroup of finite index d in G, then H is an S-group of genus 1-f- d(g - 1).

We summarise the algebraic properties of S-groups thus:
(1.2) An S-group has no nontrivial finite normal subgroup.
(1.3) The centre of an S-group is trivial.
(1.4) An abelian subgroup of an S-group is cyclic.
(1.5) A nontrivial normal subgroup of infinite index in an S-group is a free

group of infinite rank.
(1.6) Let H be a subgroup of an S-group G; then H is itself an S-group if and

only it has finite index in G.
Generalising (1.5), there is a sort of Noetherian property:

(1.7) Let H E S and let Ho C H1 c ... C H. = H be a sequence of finitely
generated subgroups such that Hr<Hr+i for each r; then there exists m ,
1 < m < n , such that Hr has finite index in H for m < r, and Hr = {1}
for r < m.

The above statements are all well known, and although it is difficult to give a
single reference, they can be easily obtained from a combination of references,
for example [5] and [17].

2. Poly-S-groups and their filtrations

Let C be a class of abstract groups; a group G is called a poly-C group when it
possesses a subnormal filtration Q = (Gr)o<r<n with Go = {1}, and Gn = G,
Gr_1 <Gr and G,/G,-1 E C for each r. Such a filtration is called strongly poly-
C when, in addition, Gr<G for each r, and characteristically poly-C when G,._1
is a characteristic subgroup of Gr for each r. The following are easy to verify:

(2.1) A characteristic poly-C filtration is strong.
(2.2) Let H be a subgroup of finite index in a strongly poly-S group G; then

H is also a strongly poly-S group.
If all C-groups have trivial centre, the same is true of poly-C groups. In
particular, the centre of any poly-S group is trivial, so enabling us to de-
scribe, in principle at least, the construction of all poly-S groups; if C =
(Gr)0<r<n is a poly-S filtration of length n , the extension 1 -* Gn_1 -*
Gn -+ Gn/Gn_1 -* 1 is determined, up to congruence, by an operator ho-
momorphism hn_1 : Gn/Gn_1 -* Out(Gn_1); we can regard G. as a fibre
product Gn = Aut(Gn_1) x Gn/Gn_1i where A : Aut(Gn_1) -+ Out(Gn_1)

is the canonical mapping. Inductively, the study of poly-S groups of length n
may be reduced to that of the outer automorphism groups of poly-S groups
of length (n-1). By a stable poly-S filtration G = (Gr)o<r<n on a group
G = G. we shall mean one for which rank(Gr/Gr_1) < rank(Gr+1/Gr) for
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1 < r < n - 1; a poly-S group is called stable when it admits a stable poly-S
filtration. We shall prove:

Theorem 2.3. A stable poly-S filtration is characteristic.

Proof Using (1.7), the general case reduces to showing that if

1-*K-+ G2Q->1

is an exact sequence of groups in which Q E S and K is finitely generated
with rank(K) < rank(Q), then K is characteristic in G. For this, if a is an
automorphism of G for which a(K) # K, then pa(K) is a nontrivial finitely
generated normal subgroup of Q in which rank(pa(K)) < rank(Q); however,
this violates the Riemann-Hurwitz Theorem. Hence a(K) = K, and K is
characteristic.

Proposition 2.4. A poly-S group contains a subgroup of finite index which
is stably (and hence characteristically) poly-S.

Proof By (2.3), it suffices to prove the stability statement. Let n denote
the length of a poly-S filtration. The case n = 1 is trivial, so suppose we
have proved the proposition for n-1 and let G (Gr)o<r<n be a poly-S fil-
tration of length n. Inductively, choose a subgroup Hn_1 of finite index in
Gn_1 admitting a poly-S filtration (Hr)o<r<n-1 such that rank(Hr/Hr_1) <
rank(Hr+1/Hr) for all r E {1, ... , n - 2}. A finitely generated group has
only a finite number of subgroups of a given finite index; thus{a(Htt_1) : a E
Aut(Gn_1)} is a finite set. Put S(Hn_t) = {a E Aut(Gn_1) : a(Hn_1) =
Hn_1}. Then S(Hn_1) is a subgroup of finite index in Aut(Gn_1). Let c :

Gn -+ Aut(Gn_1) denote the conjugation map, and put Hn = c 1(S(Hn_1)).
Observe that H._1 is normal in Hn , and we have a surjective homomorphism
Hn/Hn_1 - Hn/(Gn_1 fl Hn) in which Hn/(Gn_1 fl Hn), being a subgroup
of finite index in G,,/G,,-,, is itself in S. In particular, Hn/(Gn_1 fl R.-)
contains subgroups of arbitrary finite index. It follows easily from the Rie-
mann Hurwitz Theorem that we may choose a subgroup Q of finite index
in Hn/(Gn_1 fl Hn) such that rank(Hn_1/Hn_2) < rank(Q). Let 0 : Hn -*
Hn/Hn_1 denote the identification mapping; then H,, = 0-1(Q) is a sub-
group of finite index in G,,, and the poly-S filtration (HH)o<r<n-1 satisfies the
condition rank(HH/Hr_1) < rank(Hrt1/Hr) for all r E {1, ... , n - 1}. This
completes the proof.
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3. Properties (I)-(III)

(I) Residual finiteness

A group G is residually finite when, for each nontrivial element g E G, there
exists a homomorphism to a finite group 0 : G -* 1 such that 0(g) # 1. It
is straightforward to see that if H is a subgroup of finite index in a finitely
generated group G then H is residually finite if and only if G is. Mal'cev
showed that any finitely generated linear group is residually finite([28]). Here
we establish this for poly-S groups.

Proposition 3.1. Let 1 -4 -3 G -4 Q -4 1 be an extension with 4 finite
and Q E S; then G contains an S-subgroup G' of finite index.

Proof For each positive integer n, Q contains a subgroup Q' of index n; Q'
is necessarily in S; in fact, Q' can be taken to be the fundamental group of a
n-fold cyclic covering of the surface corresponding to Q.
First consider the case where is finite and central in G; then the extension
£ = (1 -f 4D -* G 4 Q -* 1) is completely determined by a cohomology
class c(£) E HZ(Q; I) - (D. Let Q' be a subgroup of Q with index n =
exponent(4)), and let £' be the extension £' = (1 - -+ G' 4 Q' -+ 1)
where G' = p-' (Q'). It is easy to see that c(£') = 0 so that G' splits as a
direct product G' - ' 1x Q. The result follows since G' has finite index in
G.In the general case, let c : G -* Aut('I) be the homomorphism induced by
conjugation, and put G' = Ker(c), V = 4' fl G' and Q' = p(G'). Then the
extension £' is in the case considered above. The result follows since G' has
finite index in G.

As an immediate consequence we obtain:

Corollary 3.2. Let 1 -*'I -3 G -4 Q -* 1 be an extension with 4) finite
and Q E S; then G contains an S-subgroup of finite index.

Let 1 -> K -+ G -* Q -+ 1 be an exact sequence of groups in which K is a
finitely generated residually finite group, and Q E S. Let g be a nontrivial
element of G; there exists a subgroup Kl of finite index in K such that g ¢ Kl .
Since K is also finitely generated, K, may be assumed to be characteristic
in K, so that G/Kl occurs in an extension 1 -+ K/Kl -* G/K, -+ Q -+ 1.
Observe that ir(g) # 1 where 7r : G - G/Kl is the canonical epimorphism;
since Q E S, we may, by (3.1), choose an S subgroup H of finite index in
G/Kl. H is residually finite, as it admits a faithful finite dimensional real
linear representation [28], so we can ensure that 7r(g) H; G' = it-'(H)
is a subgroup of finite index in G such that g G'. Since G is finitely
generated, we may choose a normal subgroup G" of finite index in G such
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that G" C G' C G. Then O(g) 54 1 where ' is the canonical epimorphism of
G onto G/G". We have established:

Theorem 3.3. Let 1 -+ K -4 G -a Q -* 1 be an exact sequence in which K
is a finitely generated residually finite group and Q E S; then G is residually
finite.

Following (3.3), an induction on the length of a filtration shows that:

Theorem 3.4. A poly-S group is residually finite.

(II) The Tits' alternative

A class C of groups is said to satisfy the "Tits' alternative" when, given
a group r in C and a subgroup A of r, then either A is polycyclic or else
contains a non-abelian free group. In [26] Tits showed that the class of finitely
generated linear groups has this property. We will verify it for the class of
poly-S groups.

Proposition 3.5. Let 1 -4 K -3 G 4 Q -* 1 be an extension where Q
is a nonabelian subgroup of an S-group. Then G contains a nonabelian free
group.

Proof Let Q' C Q be a nonabelian free group and put G' = p-1(Q'). Then
the extension 1 -* K -* G' 4 Q' -* 1 splits, so that G', and hence also G,
contains a subgroup isomorphic to Q.

Proposition 3.6. Let r be a poly-S group and let A be a nontrivial subgroup
of F. If A is soluble, then A is poly-{infinite cyclic}.

Proof if r E S and A is a nontrivial soluble subgroup of r, then A is infinite
cyclic. The result follows by induction on the length of a poly-S filtration on
F.

It follows easily by induction that:

Corollary 3.7. The class of poly-S groups satisfies the Tits' alternative.

(III) Poincare Duality

S-groups are Poincare Duality groups in the sense of [16]. Since the class
of Poincare Duality groups is closed under extension, it follows that a poly-
S group is a Poincare Duality group. Moreover, by a result of Serre [23],
finitely presented groups of type FL are also closed under extension, we see
that poly-S groups are of type FL.
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4. Decomposition into irreducibles

Two abstract groups G1, G2 are said to be commensurable, written G1 - G2,
when there exists a group H, and injections c, : H -4 G,(r = 1, 2), such
that t,(H) has finite index in G,. An infinite group G is reducible when it is
commensurable to a direct product G - H1 x H2 where H1, H2 are infinite
groups; otherwise, G is irreducible. It is straightforward to see that:

Proposition 4.1. A finitely generated infinite group G is irreducible if and
only if it contains no subgroup of finite index which is isomorphic to a direct
product of infinite groups.

As a consequence of the Borel Density Theorem, a lattice in a connected linear
semisimple Lie group admits, up to commensurability, an essentially unique
decomposition into a product of irreducible semisimple lattices ([22], p.86).
Here we establish an analogous decomposition for poly-S groups into products
of irreducible poly-S groups. If C is a class of groups, we say that a group G
admits a C-product structure when it is the internal direct product, written
G = G10 o G., of a finite sequence (G1, ... , G,,,) of normal subgroups of G
such that each Gi E C. Two product structures P = (GA)AEA, Q = ALEn
on a group G are said to be equivalent when there exists a bijection v : A -4 SI
such that for all A E A, Ga = HH(a), and strongly equivalent when, in addition,
we have equality Ga = HH(a) for all A E A.
It is easier to work within a wider context. Let G denote the class of finitely
generated infinite groups of finite cohomological dimension with the property
that every subgroup of finite index has trivial centre; G contains all poly-S
groups. Let Co denote the subclass of L consisting of irreducible groups; we
show that an Go-product structure on a group is unique up to commensura-
bility.

Proposition 4.2. If H and K are commensurable groups having Go-product
structures H = H1 o . o H. and K = K1 o o K respectively, then m = n,
and for some permutation r of the indices, Hi n K; has finite index in both
Hi and K,(i) if j = T(i), and is trivial if j 54 T(i).

Proof Without loss we may suppose that m < n. Put G = H n K, which
has finite index in both H and K, and define Li = G n Ki(= H n Ki), and
L = L1 o . . . o L,,. Each Li has finite index in Ki, so that L has finite index
in K. Since L C G, L also has finite index in H. Fix ,i E {1, ... , m} and let
7r : H -* Hµ denote the projection map. Since H. is irreducible and .7rµ(Li)
centralises i # j , there exists a unique element r(µ) E {1, . . . , n}
such that ir. (Li) = {1} for i 0 T(µ) and 7r, (L,(µ)) has finite index in H.
T defines a function T : {1, . . . , m} -a {1, . . . , n}; since each Li is nontrivial,
for each i E {1,. .. , n} there exists p E {1, ... , m} such that {1};
that is, r is surjective. Thus m = n and hence r is also bijective. It is
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easy to check that, for all p, LT(µ) is contained in H,, with finite index. If
H. fl K; # {1}, then, since K; is torsion free, H; fl K; must be infinite; thus
j = T(i), otherwise our previous claim that L,(ti) is contained in H. with finite
index is contradicted. Thus H, fl K; is trivial for j T(i). This completes
the proof.

A straightforward argument now yields:

Corollary 4.3. Any two Go-product structures on a group are strongly
equivalent.

An easy induction on cohomological dimension shows that any G-group G has
a finite index subgroup H of the form H = H, x x Hm, with each H, an
irreducible G-group. If a is an automorphism of G, then H - a(H) = a(H,)o

o a(Hm), and by (4.2), there is a unique permutation a.: {1, ... , m} -*
{1, ... , m} with the property that H; n a(H;) is trivial if j # a.(i), and
H;na(H,,.(i)) has finite index in both Hi and a(Ha.(i)).
Put Go = G1 o o Gm, where, for each i, G. = naEAut(G) a(Ha.(i)). It is
easy to see that Go is a characteristic subgroup of finite index in G. We have
established:

Theorem 4.4. An C group G contains a characteristic subgroup Go of finite
index such that Go = H1 x ... x Hm, where H1, ... , Hm are Go-groups.

When G is a poly-S group, (4.4) provides a characteristic subgroup Go of finite
index which is a direct product of irreducible G-groups. We strengthen this
to show that Go may be chosen to be a direct product of irreducible strongly
poly-S groups. Say that group G has property H when every nontrivial
normal subgroup of G is nonabelian. Clearly S-groups have property H;
moreover, in an extension 1 -> H1 -* G -* H2 -+ 1, if both H, and H2 have
property H then so also does G. We obtain:

Proposition 4.5. Each poly-S group has property H.

We write G = G, o G2 when the group G is the internal direct product
of its normal subgroups G,, G2. If G...... Gk are groups then a (normal)
subgroup H of Fjk ,G. is called a (normal) subdirect product when for each
i, ir;(H) = Gi where 7r; is projection onto the ill factor. If H is a normal
subdirect product in G = G, x . . x Gk, then [G,, G,] x . . . x [Gk, Gk] C H (see,
for example Proposition (1.2) of [9]). If, in addition, G1, ... , Gk are torsion
free nonabelian groups, it follows that H contains a free abelian group of rank
n. Suppose that G = G1 o G2 where G1, G2 both have property H, and let H
be a torsion free normal subgroup of G, with the property that every abelian
subgroup of H is cyclic. Then H is a normal subdirect product of H1 o H2 ,
where H; is the image of H under the projection of G1 oG2 onto G;. As noted
above, [H1i H1] o [H2, H2] C H. For i = 1, 2, H; is a normal subgroup of G;;
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if Hi is nontrivial, then since Gi has property Al, [Hi, Hi] # {1}, and since H
is torsion free, [Hi, Hi] contains an infinite cyclic group. If both H1, H2 are
nontrivial, then, H contains a free abelian subgroup of rank 2, contradicting
our assumption that every abelian subgroup of H is cyclic. Thus at least one
projection Hi = 7ri(H) must be trivial, from which we see that:

Proposition 4.6. Let H be a torsion free normal subgroup of G1 o G2,
where C1, G2 both have property N. If H has the property that every abelian
subgroup is cyclic, then either H C G, or H C G2.

Proposition 4.7. Let G = K1 o K2 be the (internal) direct product of
nontrivial normal subgroups K1, K2; if G is a strongly poly-S group, then
K1, K2 are also strongly poly-S groups.

Proof Let (Gr)o<r<n be a strong poly-S filtration on a group G = Gn _
K1 o K2. By (4.5), G has property Al, so that K1, K2 also have property
Al. From (4.6), it follows that either G1 C K1 or G1 C K2. Without loss of
generality, we may suppose that G, C K1. Then GIG, = (K, /G,) x K2 and
GIG, admits a strong poly-S filtration of length n-1. The result now follows
by an easy induction, beginning with the case n = 1, which is empty since S
are indecomposable as direct products.

Combined with (4.4) and (2.2), we have proved

Theorem 4.8. An S-group G contains a characteristic subgroup Go of finite
index such that Go = H1 x ... x Hm where H1, ... , H,,, are irreducible strongly
poly-S-groups.

5. The number of commensurability classes
The class S represents a single commensurability classes of abstract groups.
For poly-S groups, the situation is quite different. In this section, we shall
prove:

Theorem 5.1. For each n > 2, the irreducible poly-S groups of dimension 2n
represent infinitely many distinct commensurability classes of abstract groups.

This result is consistent with the situation for irreducible semisimple lattices;
for each n > 2, there are infinitely many commensurability classes of irre-
ducible lattices in the n-fold product PSL2(R)(2).In fact, it can be shown
using results of [8],[13], [26] that if G is any connected linear semisimple Lie
group which is C-isotypic and non-simple, then G contains infinitely many
commensurability classes of irreducible lattices. Since S C Go, it follows eas-
ily from (4.3) and (4.7) that any two S-product structures on a group G are
strongly equivalent. The following rigidity theorem for subgroups is a relative
version of this.



198 F.E.A. Johnson

Proposition 5.2. Let L = L, x x L and K = K, x x K,,, be
groups admitting S-product structures, and suppose that L has a finite index
subgroup H which contains K as a normal subgroup. Then m < n, and there
is a (unique) injective mapping or : {1, ... , m} -* {1, ... , n} with the property
that for all i, K; is a subgroup of finite index in L,(;).

Proof Dimension considerations show immediately that m < n. Let 7r; : L -4
L; denote the projection for j E {1, . . . , n}, and let J denote the set of indices
j for which irr(K) 0 {1}. Obviously J # 0, since K is nontrivial. For j E J,
7r; (H) is a S-group as it has finite index in L;, and so ir, (K) is also a S-group,
since it is a finitely generated nontrivial normal subgroup of ir;(H). However,
7r; (K,), ... , 7r; are mutually centralising normal subgroups of 7r; (K), and
as 7r; (K) _ ir; (K1) ... 7r; (K ), then a straightforward argument using (1.4),
(1.5), (1.6) gives the existence of a mapping T : J {1,. .. , n} with the
property that ir1(Ki) = {1} if i 0 r(j), and ir;(Ki) = ir,(K) if i = T(j);T is
surjective since n 1Ker(ir;) _ {1}. There are only two possibilities.

(I) Card(J) = m and T : J -* {1, ... , m} is bijective;
(II) Card(J) > m.
Suppose that (II) holds. After a permutation of the indices, we may suppose
that for some k > 2, T(r) = 1 for all r such that r < k, and that T(r)> 1 for all
r such that r > k. In particular, K1 C L, x ... x Lk. Moreover, ir;(H) # {1}
for j = 1, ... , k, and as 7r; (K1) = ir; (K) is a nontrivial finitely generated
normal subgroup of the S-group ir1(H), it follows also that ir;(K1) is an S-
group. However, K1 is a normal subdirect product of 7r, (K1) x x 7r, (K,),
so that K1 contains a free abelian group of rank p > 2 by (4.6). This is
a contradiction as K1 is a S-group. Thus (II) is false and (I) is true. Let
or : {1, . . . , m} -3 J C_ {1, . . . , n} be the inverse mapping of r; then for all i,
Ki C L,(i) and the index [Lo() : Ki] is finite by (1.6).

Proposition 5.3. Let E be a S-group, and let N1, ... , Nk be distinct mutu-
ally centralising subgroups such that N = N1 ... Nk is a nonabelian subgroup
of E. Then there exists a unique index j such that N; = N and Ni = {1} for
i,Aj.
Proof If A is a nonabelian subgroup of a S-group G, then the centraliser of A
in G is trivial. Thus if N1, N2 are mutually centralising subgroups of G and
both N1 and N2 are nontrivial,then N1.N2 is abelian. The rest now follows
by induction.

The following observation is needed at several points. For a proof see, for
example, [25].

Proposition 5.4. Let G be a group satisfying n-dimensional Poincare Dual-
ity, and let H be a subgroup of G. If H also satisfies n-dimensional Poincare
Duality then the index [G : H] is finite.
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By a pre-M,, structure we mean a pair (G, K) where G is a group, and K is a
normal subgroup of G which admits a product structure K = K, x x K. in
which K,..... K. and G/K are all S-groups; if (G, K) is a pre-M structure
then G has cohomological dimension equal to 2n + 2. Up to congruence, the
canonical extension (1 -+ K -* G -* G/K -* 1) is classified by the operator
homomorphism 0 : G/K -* Out(K, x . xK.). We say that (G, K) is an M.-
structure when, in addition, the operator homomorphism assumes the form
0 = G/K - Out(Ki) x x C Out(K, x x
in which for each i, Im(ci) is an infinite subgroup of Out(Ki). As we shall
see, the notion of is an intrinsic one; the defining extension is
uniquely determined by the isomorphism class of the group G. First observe
that:

Proposition 5.5. Let (G, K) be an Mn structure; then K., x ... x K,.,,, is
normal in G for any sequence 1 < a, < ... < a,,, < n.

Theorem 5.6. Let (G, K) be a pre-M structure and (G, L) an M.-
structure on the same group G with n > 2. Then for some (unique) per-
mutation T of { 1, ... , n} , Li = Kr(i) for all i; in particular, K = L.

Proof Let p : G -3 G/K and 7r : G --> GIL denote the canonical surjections,
and suppose that 7r(K) {1}; then 7r(K) is a nontrivial finitely generated
normal subgroup of the S-group GIL. In particular, 7r(K) has finite index in
GIL. Since 7r(K) = 7r(K,) some 7r(Ki) must be nontrivial. After
permuting the indices we may suppose that 0 {1}. For j # n, K;
centralises K,,, so that 7r (K;) centralises 7r (K.). Thus 7r (K;) = {1} for j 0 n,
and so also has finite index in GIL, so that, the restriction of 0, to

has infinite image. Hence K, x . . . x C Ker(7r) = L. Since
K, x . x K._, is normal in G it is also normal in L. By (5.2), we can find
indices r, s such that K1 C L,. Again after permuting indices, if necessary,
we may suppose that K, C L,. Since K,, L, are both S-groups, K, has
finite index in L,. Now K. centralises K,, so that as K, has finite index
in L,, the action of K on L, by conjugation induces only a finite group of
automorphisms of L,. This contradicts our previous deduction that the image
of the restriction of ¢i to 7r(K.n) is infinite, and refutes our initial assumption
that 7r(K) 54 {1}. We have established that K C Ker(7r) = L. The quotient
group L/K must now be finite, by (1.6) above, and as it is contained in the
torsion free group G/K, it follows that L = K as claimed. Finally, from (4.3)
we deduce the existence of the permutation T with the property that for all
i, Li = Kr(i).

Theorem 5.7. Let (G, L) and (H, K) be with n > 2, where
H is a subgroup of G. Then for some (unique) permutation o, of { 1, ... , n},
Ki C L,(i); in particular, K C L.
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Proof Let p : G -* GIL and 7r : H -3 G/K denote the canonical surjections.
By (5.4), H necessarily has finite index in G. Thus p(H) is a subgroup of
finite index in GIL, and hence is a S-group. Suppose p(K) # {1}. By (5.2),
and after a permutation of indices, we can suppose that p(K2) = {1} for i < n
and that p(Kn) is a subgroup of finite index in GIL. Hence K1 o .. o K,i_1 C
L = Ker(p). Moreover, K1 o o Ki_1 is normal in H fl L which has finite
index in L. Applying (5.2) again, we find a pair of indices (i, j) such that
Kt C L;. Let ¢ = (01i ... , On) : GIL -+ Out(L1) x x denote the
operator homomorphism for the extension 1 -a L -4 G -* GIL -4 1. Since

has finite index in GIL, and Im(¢3) is infinite, K acts by conjugation
on L; as an infinite group of automorphisms. However, K centralises K,, and
K; is a subgroup of finite index in L;, so that Kn acts by conjugation on L;
as an infinite group of automorphisms. This is a contradiction, refuting our
initial assumption; thus p(K) _ {1}, or equivalently, K C L. The conclusion
follows immediately from (4.3).

Theorem 5.8. If G admits an then it is irreducible.

Proof Let (G, K) be an Mn structure and suppose that G is reducible; then
G contains a subgroup of finite index H = H1 o H2 where Hl and H2 are
infinite. Let p : G -4 GIK denote the canonical map; then p(H1).p(H2)
has finite index in Q, so that p(H1).p(H2) is a S-group, and p(H1), p(H2)
are mutually centralising subgroups of p(H1).p(H2). It follows that either
p(H1) = {1} and p(H2) has finite index in Q or p(H1) has finite index in Q and
p(H2) = {1}. Without loss of generality, assume the former, so that H1 C K
and (H1oH2)f1K=H1o(H2f1K). Moreover, (H1oH2)f1K=H1o(H2f1K)
has finite index in K. Let 7rr : K -+ Kr denote the projection to the rth factor,
where K = K1 x .. x K. is the S-product structure on K. For each r, irr(H1)
and 7rr(H2 fl K) are mutually centralising subgroups, and lrr(H1).7rr(H2 fl K)
has finite index in K. Now decompose 11, . . . , n} as a union I U J where

(i) irt(H1) has finite index in K; and 7r; (H2 fl K) = {1} for i E I;
(ii) 7r; (H1) = {1} and 7r; (H2 fl K) has finite index in K1 for j E J.

Clearly I n J = 0. Define K' =
jE

J Ker(7r;) and KJ =
:er

Ker(7r;). Then

K = K'oKJ and H1 C K' and H2 fl K C KJ. Moreover, H1 has finite
index in K'. Now H2 centralises H1 and so the group of automorphisms of
K' induced by conjugation of H2 on K, is finite. As p(H2) has finite index
in Q, this contradicts our hypothesis that Im(oz) is infinite for each i E I.
Hence our initial assumption is false, and G is irreducible.

In [12] we pointed out that for the class of fundamental groups of smooth
closed aspherical 4n-manifolds, the invariant Sign/x, when defined, is an in-
variant of commensurability class. Of course, this fails in dimensions con-
gruent to 2 mod 4. Here we show how to modify this invariant to detect
commensurability classes amongst groups in M,., which can be of any even
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dimension. Thus suppose that G admits an Ms-structure (G,K). In this case
the Euler characteristic X(G) # 0.
Define K;' = K1 o ... 0 Ki_1 o Ki+l o . o K,,. Then K1' is normal in G, so we
may define G; = G/K;'. Observe that G/K and K/K1' K; are S-groups,
and there is an extension 1 -4 K/K;' -3 G. -+ G/K -+ 1. We have shown
elsewhere, (e.g. [11] ) that any such extension is smoothable; that is:

Proposition 5.9. For each i, G; is the fundamental group of a smooth
closed aspherical 4-manifold.

In general, the Poincare Duality group G; will not be orientable. For any
surface E of genus > 1, the group we denote by Out+(7r,(E)) the subgroup of
index 2 in Out(ir1(E)) consisting of those elements which act trivially upon
H2(E; Z). If ¢ = On) : G/K -3 Out(K,) x x Out(K) is the
operator homomorphism for the defining extension of G, then the extension
1 -* K/K; -> G/K; -+ G/K -* 1 is classified by O; : G/K Out(K/K;)
Out(K1). It is straightforward to check that:

Proposition 5.10. G; is an orientable Poincare Duality group if and only
if Im(cb;) C Out+(K;).

We shall say that (G, K) is an orientable M,,-structure when each Gz is
orientable. It is clear that:

Proposition 5.11. If (G, K) is an then there exists an ori-
entable Mn-structure (G, K) such that d has finite index index in G.

If (G, K) is an orientable .Mn-structure, we define

_ 2n n Sign(G.)
v(G)

X(G/K)n" =' X(K1)

The factor 2n is not strictly necessary, but prevents the unnecessary prolifer-
ation of powers of 2 arising in the denominator from the fact that the Euler
characteristic of G/K is even.The expression v(G) is obviously an invariant
of the equivalence class of the defining extension of G. By (5.6), a group G
admits at most one Mn-structure, so that:

Theorem 5.12. v(G) is an invariant of isomorphism class for groups which
admit an orientable Mn structure.

In view of the subgroup rigidity property (5.2) above, it is straightforward to
see that this can be strengthened as follows:

Theorem 5.13. v(G) is an invariant of commensurability class for groups
which admit an orientable Mn-structure.

We can now extend the invariant v to all Ma-groups. If (G, K) is an Mn
structure, then by (4.4), there exists an orientable Me-structure (G, K) for
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which d is a subgroup of finite index in G. In view of (4.7), the value of v(G)
is independent of the particular orientable M,,-structure chosen, so that we
may define v(G) = v(G).
It remains to show that, for each n > 2, the invariant v assumes infinitely
many values. To do this, we recall that Kodaira [19] constructs for each
h > 3, a fibration E°(h) -* Z(h) -* E#(h) in which fibre and base are real
surfaces with genera a(h), 3(h) respectively. The fibration is holomorphic and
locally trivial in the C°° category, but is not holomorphically locally trivial.
Moreover, the signature of the complex algebraic surface Z(h) is nonzero. In
Atiyah's formulation [1], the particular values of a(h), 3(h), Sign(Z(h)) are
as follows;

a(h) = 2h; 13(h) = 1 + 22h(h - 1); Sign(Z(h)) = -x(EQ(h)) = 21h+1(h - 1).

Applying ir, to the above fibration gives a group extension 1 -+
G(h) E,3(h) -* 1 where we write E9 = 7r,(E9) and G(h) = 7r,(Z(h)). Let
Ph : E(J(h) - Out(E..(h)) denote the operator homomorphism of this extension.

If Im(ph) is finite, it is easy to see that Z(h) has a finite covering Z(h) which is
diffeomorphic to a direct product E°(h) X E-t(h) where E"(h) is a finite covering
of Ea(h). This implies that Sign(Z(h)) = 0, and so also Sign(Z(h)) = 0,
which is a contradiction. We obtain:

Proposition 5.14. Im(ph) is infinite for all h > 3.

Now fix an integer n > 2, let

Oh . ER(h) -4 x ... X

(n copies)

be the homomorphism Oh = Ph X X ph, and let G(h) be the group defined
by the extension

1 -3 Ea(h) X ... X Ea(h) _* G(h) E,3(h) -+ 1

with Oh as operator homomorphism. In this case, each G(h)i =' ir,(Z(h)) so
that the value of v(G(h)) is calculated as follows:

v(G(h)) - 2nSign(Z(h) )n
x(E.(h))nX(E.(h))n.

Since Sign(Z(h)) = -x(ER(h)), we obtain

v(G(h)(= (-1)n2n 1

x(E.(h))n (a(h) - 1)n

However, a(h) = 2h so that

l
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1 _ 1
v(G(h) = (a(h) - 1)n (2h - 1)-*

Evidently v(G(h)) assumes infinitely many values, and thus, for n > 2, the
class .M represents infinitely many distinct commensurability classes of ab-
stract groups. In fact, the same computation works also for n = 1, giving the
same conclusion as [12). We obtain:

Theorem 5.15. For each m > 2, the irreducible poly-S groups of dimension
2m represent infinitely many distinct commensurability classes of abstract
groups.

The construction of G(h) can be varied, for example, by choosing hl, . . . , h
independently, and finding a real surface El' which covers each of the surfaces
Ev(h1), ... , ER(h^) . Let p' be the restriction of phi to Ep , and put Oh =
pi x x pn. Finally, let G'(h) be the extension determined by the operator
homomorphism oh. It is straightforward to calculate that, in this case, the
invariant v assumes the value

v= 1

(2h1 - 1) ... (2h - 1)

6. Automorphisms

Let G be a group given as a group extension £ = (1 -+ K -* G - Q 1).
In general, there is no easy relationship between the automorphism groups
of G, K and Q. However, in the case which interests us, when K and Q
are poly-S groups, it is possible to say something. We start by considering
the group Aut(£) of automorphisms which preserve £; to be precise, Aut(E)
consists of those automorphisms a : G -+ G such that a(K) = K; a then
induces an automorphism aQ on the quotient Q. We obtain a "restriction"
homomorphism p : Aut(£) -3 Aut(K) x Aut(Q) given by p(a) = (aK, aQ),
where aK denotes the restriction of a to K. The kernel of p is the group C(£)
of self-congruences of £, so that we have an exact sequence

1 -* C(£) Aut(£) 4 Aut(K) x Aut(Q).

The homomorphism c : G -* Aut(K) obtained from conjugation, c(g)(k)
gkg-1, induces the so-called "operator homomorphism" 0 : Q -> Out(K) _
Aut(K)/Inn(K); the centre Z(K) of K is naturally a module over Out(K),
and becomes a module over Q via the operator homomorphism. It is easy
to check that for a E C(£), the assignment x H a(x)x-' is a function
on G taking values in Z(K). Moreover, the function za : Q + Z(K)
defined by z,(p(y)) = z,(y) is an element of Z'(Q,Z(K)), the (abelian)
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group of 1-cocycles of Q with values in S(K). Moreover, the mapping
C(£) -* Z'(Q, Z(K)), a H za, is an isomorphism of groups. When K has
trivial centre, matters simplify to give:

(6.1) If K has trivial centre, the group of congruences C(£) is trivial, so that
the exact sequence 1 C(£) -4 Aut(£) 4 Aut(K) x Aut(Q) reduces
to an injection Aut(£) 4 Aut(K) x Aut(Q).

If = (Gr)o<r<n is a poly-S filtration of length n on G., we define

Aut(QQ) = {a E Aut(Gn) : a(Gr) = Grfor allr, 1 < r < n}.

Since groups in S all have trivial centre, we see inductively that:

Theorem 6.2. Let 9 be a poly-S filtration on G = Gn; then Aut(g) imbeds
as a subgroup of Aut(Q,) x .. x Aut(Qm), where Q,..... Q,,, are the successive
quotients, Qr = G,/G,_,.

Although S-groups themselves fail to be rigid in the sense of Mostow, poly-
S groups nevertheless exhibit a very strong form of rigidity; the author has
recently shown (February 1996) the following, which completely answers a
question raised in [14].

Theorem 6.3. Any group G admits at most a finite number of poly-S
filtrations.

The details will appear in [15]. As an immediate corollary, one obtains:

Theorem 6.4. If 9 is a poly-S filtration on G, then Aut(g) is a subgroup
of finite index in Aut(G).

Corollary 6.5. If Gis a group with poly-S filtration G = (Gr)o<r<n, then
Aut(G) is commensurable with a subgroup of Aut(Q,) x x Aut(Q,,,) where
Q,, ... , Q. are the successive quotients, Qr = Gr/Gr_,.

7. Smoothing

A discrete group r is said to be smoothable with model the smooth closed
manifold Xr when Xr is aspherical with ir,(Xr) = F. There is a relative
condition which is a priori stronger; we say that r has the extension smoothing
property when, for any extension E = (1 -4 F -4 G -4 Q -> 1) in which Q is
smoothable with model XQ, the canonical fibration

K(£,1) = (K(F,1) -4 K(G, 1) -4 K(Q, 1))

is fibre homotopy equivalent to a smooth fibre bundle Xr -4 E -4 XQ in
which the fibre Xr is a smooth finite dimensional manifold of homotopy type
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K(F,1). If S = (1 -* K -> G -+ Q -3 1) is a group extension in which r has
the fibre smoothing property and Q is smoothable it is tautological that G is
also smoothable. More important for our purposes is the following devissage
result, whose proof is a straightforward exercise in exact sequences and fibre
bundles.

Proposition 7.1. Suppose that in the extension 1 - Fl -f F -* I'2 ->
1, both r, and F2 have the extension smoothing property and that F1 is a
characteristic subgroup of F; then r has the extension smoothing property.

Next we show that S-groups possess the extension smoothing property. If E
is a closed surface of genus > 2, and Diff(E) is the group of diffeomorphisms
of E, topologised with the C°°-topology, then by a theorem of Baer [2] , the
natural homomorphism 0 : Diff(E) -> Out(ir1(E)) is surjective and has as
its kernel the identity component Diffo(E). However, Diffo(E) is contractible,
by a result of Earle and Eells [4]. The classifying space functor G H BG
preserves homotopy equivalences [3] , so that BDiffo(E) is also contractible,
and the induced map B¢ : BDiff(E) -* BOut(ir1(E)) is a homotopy equiv-
alence. If 13E (X) denotes the set of smooth equivalence classes of smooth
bundles with fibre E over a smooth connected manifold X, then standard ap-
proximation arguments show that 13E (X) is naturally equivalent to the set of
based homotopy classes [X, BDiff(E)] °-' [X, BOut(irl (E))]. However, fibra-
tions with fibre E over a CW complex X are classified by [X, BG(E)] where
G(E) is the monoid of homotopy equivalences of E. Since E is aspherical and
71 (E) has trivial centre, the identity component Go(E) is contractible, and the
natural mapping G(E) -4 Out(ir1(E)) also induces a homotopy equivalence
BG(E) -+ BOut(irl(E)), so that the classification of smooth fibre bundles
with fibre E coincides with that of fibrations with fibre E. In particular, any
fibration K(ir1(E),1) -+ Xc -* XQ over a smooth base XQ is fibre homotopy
equivalent to a smooth fibre bundle E -* E -* XQ. That is, we have proved:

Theorem 7.2. S-groups possess the extension smoothing property.

From (2.3), (7.1) and (7.2), it follows immediately that

Corollary 7.3. Any stably poly-S group has the extension smoothing prop-
erty.

Since, by (2.4), an arbitrary poly-S group contains a stably poly-S group
with finite index, we see that:

Corollary 7.4. Any poly-S group contains a smoothable subgroup of finite
index.

Let F be a discrete group which is smoothable with model Xr. We say that
Xr is finitely rigid when each finite subgroup I C Out(F) can be realised as a
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group of diffeomorphisms on Xr. It is a consequence of the Mostow Rigidity
Theorem [20] and Kerckhoff's solution to the Nielsen Conjecture [18] that any
torsion free discrete cocompact subgroup of a semisimple Lie group admits a
finitely rigid model [10]. This is not known for poly-S groups, and it is here
that the analogy between poly-S groups and discrete cocompact subgroups
is farthest from being complete; it is precisely this which stands in the way of
showing that all poly-S groups are smoothable. One difficulty is that it is by
no means clear how to endow even the smooth models that we can construct
with geometries tractable enough to approach this problem. For example,
a typical poly-S group need not be the fundamental group of any compact
Kahler manifold [7]. Indeed, in real dimension four, there is a "rigidity the-
orem" due to A.N. Parshin which shows that, if the diffeomorphism types
of base and fibre are fixed, there are only finitely many operator homomor-
phisms ir1(Base) -* Out(r1(Fibre)) for which the associated fibration admits
the structure of a Kodaira fibration. See [21], [14]. In some cases, however,
the manifold we construct does admit the structure of a complex projective
variety. In particular, this is true for the M. groups of §5. The approach
of Griffiths [6] and Shabat [24] using the Bers Simultaneous Uniformisation
Theorem can be generalised to show

Theorem 7.5. Each Mn group acts as a discrete cocompact group of isome-
tries on a bounded domain in Cn+1

The details will appear elsewhere.
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ANALYTIC VERSIONS OF THE ZERO DIVISOR
CONJECTURE

PETER A. LINNELL

Math, VPI, Blacksburg, VA 24061-0123, USA
email: linnell@math.vt.edu

1. INTRODUCTION

This is an expanded version of the three lectures I gave at the Durham confer-
ence. The material is mainly expository, though there are a few new results,
and for those I have given complete proofs. While the subject matter involves
analysis, it is written from an algebraic point of view. Thus hopefully alge-
braists will find the subject matter comprehensible, though analysts may find
the analytic part rather elementary.
The topic considered here can be considered as an analytic version of the zero
divisor conjecture over C: recall that this states that if G is a torsion free
group and 0 a, a E CG, then a/3 : 0. Here we will study the conjecture
that if 0 # a E CG and 0 0 E LP(G), then a/3 0 (precise definitions of
some of the terminology used in this paragraph can be found in later sections).
We shall also discuss applications to LP-cohomology.
Since these notes were written, the work of Rosenblatt and Edgar [19, 54] has
come to my attention. This is closely related to the work of Section 6.

2. NOTATION AND TERMINOLOGY

All rings will have a 1, and to say that R is a field will imply that R is
commutative (because we use the terminology division ring for not necessarily
commutative "fields"). A nonzero divisor in a ring R will be an a E R such
that ab 0 54 ba for all b E R\0. To say that the ring R is a domain will
mean that if a, b E R\0, then ab 54 0; equivalently R\0 is the set of nonzero
divisors of R. We shall use the notation C, R, Z, N and P for the complex
numbers, real numbers, integers, nonnegative integers and positive integers
respectively. Ring homomorphisms will preserve the 1, and unless otherwise
stated, mappings will be on the left and modules will be right modules. If
n E N, then M' will indicate the direct sum of n copies of the R-module M.
As usual, ker 9 and im 9 will denote the kernel and image of the map 9. The
closure of a subset X in a Banach space will be denoted by X; in particular if
9 is a continuous map between Banach spaces, then im 0 denotes the closure
of the image of 9. If f is a Hilbert space and K is a subspace of R, we shall
let G(W) denote the set of bounded linear operators on ?-l, and K1 denote
the orthogonal complement of K in W. We shall let M" (R) indicate the set of
n x n matrices over a ring R, GL,,(R) the set of invertible elements of M,,,(R),
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1n the identity matrix of Mn(R), and On the zero matrix of Mn(R). If t E P
and Ai E Mn; (R) (1 < i < t), then diag(Ai,... , At) denotes the matrix in
Mnl+...+nt(R)

Al 0 ... 0

o A2 ... 0

o o ... At

For any ring R, we let Ko(R) denote the Grothendieck group associated with
the category of all finitely generated projective R-modules: thus K0(R) has
generators [P] where P runs through the class of finitely generated projective
R-modules, and relations [P] = [Q] ® [U] whenever P, Q and U are finitely
generated projective R-modules and P = Q ® U.
When R is a right Noetherian ring, the Grothendieck group associated with the
category of all finitely generated R-modules will be denoted by Go(R): thus
Go (R) has generators [M] where M runs through the class of finitely generated
R-modules, and relations [L] = [M] ® [N] whenever L, M and N are finitely
generated R-modules and there is a short exact sequence 0 -* M - L -*
N 0. There is then a natural map K0(R) -> Go(R) given by [P] -- [P],
and in the case R is semisimple Artinian, this map is an isomorphism.
We shall use the notation G *A H for the free product of the groups G and
H amalgamating the subgroup A, [G : A] for the index of A in G, G' for the
commutator subgroup of G, and Y (G) for the set of finite subgroups of G. If
the orders of the subgroups in F(G) are bounded, we shall let lcm(G) stand
for the lcm (lowest common multiple) of the orders of the subgroups in.F(G).
The characteristic subgroup of G generated by its finite normal subgroups will
be indicated by A+ (G). If S is a subset or an element of G, then (S) will
denote the subgroup generated by S. For g E G, we shall let CG(g) indicate
the centralizer of g c G. If X and Y are classes of groups, then G E X Y will
mean that G has a normal subgroup X E X such that G/X E Y.

3. DEFINITIONS AND LP(G)

Here we will define the Banach spaces LP(G) and discuss some elementary
results from functional analysis. Throughout this section G will be a group.
As usual, we define the complex group ring

CG = {E agg ag E C and ag = 0 for all but finitely many g}.
gEG

For a = >9EG agg, a = EgEG agg E CG, the multiplication is defined by

a,6 = E agahgh = 1: agx-lax)g
g,hEG gEG xEG
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Then for 1 < p E R, we define

LP(G)={a=1: aggI agECand IagIP<oo},

r

gEG gEG

IlaIIP - ( l

gIP)1/P

gEG

Thus LP(G) is a Banach space under the norm (of course LP(G) can also
be defined for p < 1, but then it would no longer satisfy the triangle inequality
11a +,311p < IIaIIP + II/3IIP and so would not be a Banach space). Also we define

L' (G) = {a = agg ag E C and sup lagI < oo},
9EG 9EG

Co(G)={a=1: agga9ECandgiven e>0,
gEG

there exist only finitely many g such that Iagl > e},

IIall00 = sup lal.
gEG

Then L°°(G) and Co(G) are Banach spaces under the norm II III. If a E
L°°(G), then ag E C is determined by the formula a = /gEG agg. For p < q,

CG C LP(G) c L'(G) c Co(G) c L°°(G),

and there is equality everywhere if and only if IGI < oo and strict inequality
everywhere if and only if IGI = oo. The multiplication in CG extends to a
multiplication

L'(G) x L°° (G) -* L°° (G)

according to the formula

(3.1) Eagg>agg=
gEG gEG g,hEG gEG xEG

and this also induces a multiplication Ll (G) x LP (G) -4 LP(G) for all p > 1;
in the case p = 1, this makes L' (G) into a ring. Another multiplication is
L2(G) x CG L2(G); this is useful because it means that L2(G) can be
viewed as a right CG-module, as we do in Section 11.
The central topic of these notes is the following:

Problem 3.1. Let G be a torsion free group and let 1 < p < oo. Does
054 aECG and 0 0,3 E LP(G) imply a1#0?

We shall also consider generalizations of this to groups with torsion and to
matrix rings. Since this can be considered as an extension of the classical zero
divisor conjecture, let us consider the current status of that problem.
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4. THE CLASSICAL ZERO DIVISOR CONJECTURE

We shall briefly review the status of the classical zero divisor conjecture. Recall
that the group G is right ordered means that there exists a total order < on
G such that x < y implies that xz < yz for all x, y, z E G. The class of
right ordered groups includes all torsion free abelian groups, all free groups,
and is closed under taking subgroups, directed unions, free products, and
group extension (i.e. H and G/H are right ordered implies that G is right
ordered). It also includes the class of locally indicable groups, where G is
locally indicable means that if H 54 1 is a finitely generated subgroup of G,
then there exists Ho < H such that H/Ho = Z. Furthermore if G has a family
of normal subgroups {Hi I i E Z} for some indexing set Z such that G/Hi is
right orderable for all i E I and nic, Hi = 1, then G is right orderable. These
results can be found in [44, §7.3]. Then the usual argument which shows that
a polynomial ring is a domain can be extended to show

Theorem 4.1. Let k be a field and let G be a right ordered group. Then kG
is a domain.

Variants of this result have been around in the literature for a long time. For
instance back in 1940, Higman [29] proved the above result in the case G is
locally indicable.
Little further progress was made until the 1970's, though in 1959 Cohn proved
that the free product of two domains amalgamating a common division ring
is also a domain [13, theorem 2.5]. The significance of this result was not
realized for group rings until Lewin applied it to show that under fairly mild
restrictions, the group ring of a free product with amalgamation is a domain.
To describe his results, we need to recall the definition of the Ore condition.
Let R be a ring, let S be the set of nonzero divisors in R, and let So be
a subset of R which is closed under multiplication and contains 1. Then R
satisfies the right Ore condition with respect to So means that for each r E R
and s E So, there exists r1 E R and s1 E So such that rs1 = srl, and then
we can form the ring RSo 1 which consists of elements {rs-1 I r E R, s E So}.
Normally So will be contained in S, but this is not essential. We say that
R satisfies the right Ore condition if it satisfies the right Ore condition with
respect S. Also a classical right quotient ring for R is a ring Q which contains
R such that every element of S is invertible in Q, and every element of Q can
be written in the form rs-1 with r E R and s E S. If such a ring Q exists,
then R satisfies the right Ore condition and RS-1 =' Q. In the case that R is
also domain, this is equivalent to saying that R can be embedded as a right
order in a division ring D; in other words, each element of D can be written
in the form rs-1 where r, s E R and s # 0. It is well known that a semiprime
right Noetherian ring satisfies the right Ore condition.
A right Ore domain will mean a domain which satisfies the right Ore condition;
thus by the above, a right Noetherian domain is a right Ore domain. Of course
one can replace "right" with "left" in all of the above, and then an Ore domain
will mean a domain which satisfies the Ore condition; i.e. both the right and
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left Ore condition. If G is a solvable group and k is a field such that kG
is a domain, then the proposition of [36] shows that kG satisfies the Ore
condition. Then one of the consequences of Lewin's results for example, is
(see [36, theorem 1])

Theorem 4.2. Let k be a field and let G = G1 *H G2 be groups such that
H 4 G. Suppose kG1 and kG2 are domains, and kH satisfies the right Ore
condition. Then kG is a domain.

This result was applied by Formanek [25] to prove that if k is a field and G is
a torsion free supersolvable group, then kG is a domain.
The next step was made by Brown, Farkas and Snider [6, 24] who realized
that a combination of ring and K-theoretic techniques could be applied to the
problem, especially solvable groups. Their techniques established that if k is
a field of characteristic zero and G is a torsion free polycyclic-by-finite group,
then kG is a domain. Building on these ideas, Cliff [8] established the zero
divisor conjecture for group rings of polycyclic-by-finite groups over fields of
arbitrary characteristic.
At this time it was already folklore that a suitable generalization of some
well known K-theoretic theorems on polynomial rings, in particular on the
Grothendieck group Go, would yield stronger results for the zero divisor con-
jecture, especially for solvable groups. Let G be a group, let R be a ring, and
let R * G be a crossed product (see [47]). Thus R * G is an associative ring
with a 1, and it may be viewed as a free R-module with basis {g I g E G},
where each g is a unit in R * G. Another way of describing R * G is that it
is a G-graded ring with a unit in each degree (see [47, chapter 1, §2]). Of
course R * G is not uniquely determined by R and G in general, but this never
seems to cause any confusion. Also it is clear that if H 5 G, then R * H (the
free R-submodule of R * G with R-basis the elements of H) is also a crossed
product and is a subring of R * G. Many theorems for group rings go over
immediately to the crossed product situation. Thus for example, Theorem 4.1
becomes

Theorem 4.3. Let k be a domain, let G be a right ordered group, and let
k * G be a crossed product. Then k * G is a domain.

To make induction arguments work, we would prefer to work with R*G rather
than the group ring RG. Indeed if H a G, then a crossed product R * G can
be expressed as the crossed product RH * [G/H], whereas the corresponding
result for group rings, that if k is a field then kG can be expressed as the
group ring kH[G/H], is decidedly false.
The importance of Go for the zero divisor conjecture is as follows. If G is a
torsion free group and k * G is a crossed product, then one can often prove
that k * G can be embedded in a matrix ring Mn(D) over a division ring D
for some n E F in a "nice way". Clearly what we need is that n = 1. If I is
a minimal right ideal of Mn(D), then G0(Mn(D)) = ([I]), so we would like to
prove that G0(Mn(D)) = ([Mn(D)]). With the right setup, the inclusion of
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k * G in Mn(D) induces an epimorphism of Go([k * G]) onto Go(Mn(D)), so it
will be sufficient to prove that Go(k * G) = ([k * G]).
If G is a finitely generated free abelian group, k a right Noetherian ring, and
k * G a crossed product, then by exploiting the fact that G can be ordered it
has been known for a long time that the natural map Go (k) -4 Go (k * G) is an
epimorphism; in particular if k is a field, then Go(k * G) = ([k * G]). However
for a long time better K-theoretic results (at least for applications to the zero
divisor conjecture) seemed hard to come by. Then in 1986, John Moody came
up with the following remarkable theorem (proved in [43, theorem 1]).

Theorem 4.4. Let G be a finitely generated abelian-by-finite group, let R be
a right Noetherian ring, and let R * G be a crossed product. Then the induced
map

® Go(R * H) -* Go(R * G)
HEF(G)

is surjective.

For an exposition of this result, see [9, 23] and [47, chapter 8]. Thus in the
special case R is a division ring and G is torsion free finitely generated abelian-
by-finite, we have that Go (R * G) = ([R * G]), and using earlier remarks of
this section, it is not difficult to prove that R * G is a domain. Also an easy
induction argument shows that Theorem 4.4 remains valid if G is replaced
by an arbitrary polycyclic-by-finite group (this is in fact how Theorem 4.4
is stated in [43, theorem 1]). Another consequence of Theorem 4.4 is the
following result, well known from when Theorem 4.4 was established.

Corollary 4.5. Let G be an abelian-by-finite group, let k be a division ring,
and let k * G be a crossed product. If k * H is a domain whenever H is a finite
subgroup of G, then k * G is an Ore domain.

Proof (sketch). We may assume that G is finitely generated and A+(G) = 1.
Let A < G with A free abelian and [G : A] < oo. If S = k * A\0, then
we can form the ring k * GS-1, which will be an n x n matrix ring over a
division ring for some n E P. Note that k * H is a division ring whenever
H is a finite subgroup of G. By Theorem 4.4 Go(k * G) = ([k * G]), and
by [34, lemma 2.2] the inclusion k * G - k * GS-' induces an epimorphism
Go(k * G) -4 Go(k * GS-1). Therefore Go(k * GS-1) = ([k * GS-1]) and we
deduce that n = 1, i.e. k * GS-1 is a division ring. The result follows.

Another induction argument now gives the zero divisor conjecture for crossed
products of torsion free solvable groups over right Noetherian domains; in fact
it shows that if G is a torsion free solvable group, R is a right Ore domain and
R * G is a crossed product, then R * G is also a right Ore domain. Roughly
the argument goes as follows. To prove that R * G is a right Ore domain, we
may assume that G is finitely generated. Then there exists H < G such that
G/H is finitely generated abelian-by-finite and H is "smaller" than G, so by
induction we may assume that R * F is a right Ore domain whenever F/H is



Analytic versions of the zero divisor conjecture 215

a finite subgroup of G/H; let us say that R * H is a right order in the division
ring D. We now form the crossed product D * [G/H], and since D * [F/H] is
a domain for all finite subgroups F/H of G/H, we deduce from Corollary 4.5
that D * [G/H] is an Ore domain. It now follows easily that R * G is a right
Ore domain.
These arguments also apply to the case when G is an elementary amenable
group. Recall that the class of elementary amenable groups, which we shall
denote by C, is the smallest class of groups which

(i) Contains all cyclic and all finite groups,
(ii) Is closed under taking group extension,
(iii) Is closed under directed unions.

Then C contains all solvable groups, and every elementary amenable group is
amenable (see [48, 491 for much information on amenable groups). Then the
arguments of above establish the following result.

Theorem 4.6. Let G E C and let R be a right Noetherian domain. If G is
torsion free, then R * G is a domain. In fact, R * G is a right order in a
division ring.

More results along these lines can be found in [34].
Theorem 4.4 is very useful for Problem 3.1 and related problems. Whenever
you can prove a conjecture related to zero divisors for a class of groups D,
then with the aid of Theorem 4.4, it is usually easy to prove it also for the
class of groups DC; an exception to this is Theorem 4.1.
Finally results of Lazard [35] imply that if p is an odd prime and G is the kernel
of the natural epimorphism GL,,(Z) -* GL,,,(Z/pZ) (i.e. G is a congruence
subgroup), then Z G is a domain (where 7Gp denotes the p-adic integers; a
similar result holds for p = 2). This is described in [23]; see also [46].
When proving the zero divisor conjecture and related problems, it seems in
nearly all cases that one needs to not only show that the group ring is domain,
but that it embeds in a division ring in some nice way. This is the case, for
example, in Theorem 4.6.
We shall see that for the case p = 2, many of the above techniques are still
relevant for Problem 3.1, but in the case p > 2, at least at the moment, they
do not seem to be helpful and methods from Fourier analysis appear to be
more useful.

5. ELEMENTARY RESULTS AND LP-COHOMOLOGY

If G is a group with torsion, say g 0 1 = gl for some g E G and n E IF, then
(1 + g + + gi-1)(1 - g) = 0, so there are zero divisors. Thus the simplest
nontrivial case to consider is when G is infinite cyclic, say G = (x) where x
has infinite order. If L = LP(G), Co(G) or CG, and a E CG, let us say that
a is a zero divisor in L if there exists 03 E L\0 such that aQ = 0, and that a
is a nonzero divisor in L if no such a exists.

Theorem 5.1. Let G = (x) where x has infinite order, and let E C where
1. Then
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(i) x - is a zero divisor in L°°(G).
(ii) If 0 # a E CG, then a is a nonzero divisor in Co(G).

Proof. (1) (x - f) En -. -nxn = 0.

(ii) Write a = cxrn(x - al) ... (x - an) where c, a1 E C, m E Z, and c # 0.
Then by induction on n, we may assume that n = 1, m = 0 and c = 1; in
other words we may assume that a = x - a where a E C. Suppose a,0 = 0
where 0 E C0(G). Write ,Q = E _. bnxn where bn E C for all n. Equating
coefficients of xn+1 we obtain bn = abn+1 for all n E Z. Without loss of
generality, we may assume that at 1 and b1 # 0. But then our equation on
the coefficients yields Ibn > lb1I for all n E F, which contradicts the hypothesis
that a E Co(G). 0
Thus though we cannot expect Problem 3.1 to have an affirmative answer in
the case p = oo, it seems plausible that it may have an affirmative answer in
all other cases (and also in the case when LP(G) is replaced by Co(G)).
Let us give some motivation for the problem from Y-cohomology. For more
detailed information we refer the reader to [7, 10, 11] and [26, §8]. Let X
be a simplicial complex on which G acts freely, let Xr denote the set of r-
simplices of X, let Cr (X) denote the free abelian group with basis X, and
let ar : Cr (X) + Cr_1(X) denote the boundary map. For simplicity, we shall
assume that Xr has only finitely many orbits for each r E N. Now define

LP(Xr) ={ f: Xr -* C I E I f (a) I P< oo}.
aEXr

Then LP(X,) is a Banach space under the norm I I f I I = (> EX. f (a)1p)11P;

in fact it is isomorphic to LP(G)d, where dr is the number of orbits of Xr.
The coboundary map br: LP(Xr) -* LP(Xr+1) which obeys the rule (drf)a =
f (ar+ia) for all or E Xr+1, is clearly a well defined bounded linear operator
on LP(Xr). Thus kerbr is a closed subspace of LP(Xr), but imbr need not be
closed. We now define the LP-cohomology groups by

ker Jr
lP Hr (X) =

im Sr-1

Since Or commutes with the action of G, it follows that ar+1 is described by
a dr x dr+1 matrix all of whose entries are in ZG, and Sr is described by the
transpose of this matrix. Therefore Jr is described by a matrix all of whose
entries are in ZG. To determine lPHr(X), we need to know about kerbr and
in particular when it is nonzero. The simplest case is when br is 1 x 1 matrix.
Thus we have come up against the problem stated in Problem 3.1.
In the case of L2-cohomology, we can exploit the fact that L2 (G) is a Hilbert
space (see Section 8). Let Mr denote the orthogonal complement of im 6r_1 in
kerbr. Then Mr is a closed subspace and also a CG-submodule of L2(Xr). It
follows that M has a well defined von Neumann dimension dimG(M) (which
will be described precisely in Section 11). Then for r E N, the L2-Betti
numbers are defined by V(2)(X : G) = dime Mr. In the case G is a group whose
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finite subgroups have bounded order, results from studying Problem 3.1 show
for example, that if G has a normal subgroup F such that F is a direct product
of free groups and G/F is elementary amenable, then lcm(G) br(2)(X : G) E N
for all r E N and for all X.

6. THE CASE p > 2 AND G ABELIAN

In view of Theorem 5.1, it seems surprising that the answer to Problem 3.1 is
negative if G is a noncyclic abelian group and p > 2. The work of this section
describes work of my research student Mike Puls.
Throughout this section d E 1P, and G is a finitely generated free abelian group
of rank d. Let T denote the torus, which we will think of as [-7r, 7r]/{-7r - 7r},
and let Td = T x . . . x T, the d-torus. We can view T as the abelian group
il8/27rZ, and then Td is also a group. This means that we can talk about
cosets in Td; a coset of Td will mean a coset of the form Ht where H < 'IN
and t E Td, and the coset will be proper if H # T. Let {x1, ... , xd} be a
Z-basis for G. If g = xi 1 . . . xdnd E G (where ni E Z), then we can define the
Fourier transform g : 7Cd -+ C by

*` tl +...+ndtd )

(where ti E T). If a = E9EG agg E L'(G), then we set

a = agg: T' - C,
gEG

and this extends the Fourier transform to L'(G). Set Z(a) = It E Td ( &(t) _
0}. Then Puls [52] proved the following result.

Theorem 6.1. Suppose a E L1(G) and Z(a) is contained in a finite union
of proper closed cosets. Then a is a nonzero divisor in Co(G).

Let us indicate how this theorem is proved. If E is a closed subset of Td, then
we define I (E) = {/3 E L' (G) I E C Z(,3)1, j (E) to be the set of all /3 E L' (G)
such that there exists an open subset 0 in 'IN such that E C_ 0 C Z(,8), and
J(E) to be the closure of j(E) in L1(G). Then j(E) C J(E) C I(E), J(E)
and I(E) are closed ideals in L1(G), and a E I(Z(a)). We say that E is an
S-set (or set of spectral synthesis) if J(E) = I (E). We require the next result
on the existence of S-sets, which follows from [55, Theorem 7.5.2], the remark
just preceding that theorem, namely that C-sets are S-sets, and the remark
immediately following that theorem, namely that C-sets are invariant under
translation.

Proposition 6.2. A finite union of closed cosets is an S-set.

Define

,D(E) _ {h E L°°(G) I /3h = 0 for all /3 E I(E)},

W(E) _ {h E L°°(G) I /3h = 0 for all /3 E J(E)}.
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Then 4)(E) C T(E) because J(E) C_ I(E), and if F is a closed subset of E,
then T(F) C T(E). Now for a E L'(G), it follows from [55, Corollary 7.2.5a]
that J(Z(a)) C_ aL'(G), where denotes the closure in L1(G). Therefore if
h E L°°(G), then

(6.1) ah = 0 implies h E '&(Z(a)).

We say that E is a set of uniqueness if T (E) f1 Co (G) = 0; clearly if E is a set
of uniqueness and F is a closed subset of E, then F is also a set of uniqueness.
It follows from (6.1) that if Z(a) is contained in a set of uniqueness, then a
is a nonzero divisor in Co (G). Conversely if a is a nonzero divisor in Co (G)
and Z(a) is an S-set, then '(Z(a)) and we deduce that Z(a) is a
set of uniqueness. Thus we have

Lemma 6.3. Let a E L1(G).
(i) If Z(a) is contained in a set of uniqueness, then a is a nonzero divisor

in Co(G).
(ii) If a is a nonzero divisor in Co(G) and Z(a) is an S-set, then Z(a) is a

set of uniqueness.

Proof of Theorem 6.1. For this proof, let us say that a hypercoset in Td is
a set of the form Z(g - ) where g E G\1, E C and 1es = 1. From [55,
section 2.1], it is not difficult to see that every proper closed coset of Td is
contained in a hypercoset. Since Z(/3ry) = Z(/3) U Z(ry) for 6, -y E L'(G), we
see that any finite union of hypercosets in Td is of the form Z(fi(gi - i))
where gi E G\1, Si E C and ISj5 = 1.
If 1 g E G and E C, then the same argument as in Theorem 5.1(ii) shows
that g - C is a nonzero divisor in Co (G). It follows that f1i (gi - Si) is a nonzero
divisor in Co(G) whenever gi E G\1 and i E C; the relevant case here is when
Iil = 1 for all i. Using Proposition 6.2 and Lemma 6.3(ii), we see that any
finite union of hypercosets is a set of uniqueness. Therefore a is a nonzero
divisor in Co(G) by Lemma 6.3(i).

Let us now describe Puls's proof that if G = 7L2, then there exists a E CG\0
which is a zero divisor in L9(G) for some q < oo (we shall consider the case
G Zd where d > 2 later, where it will be seen that better values of q can be
obtained). Let {x, y} be a basis for G. For i, j E 7L and 0 E L°°(G), we shall
write /3i1 or /3i,1 for ,3x:yi. Given a bounded measure p on T2, we can define
its Fourier transform i E L°° (G) by

l-tmnxmyn where f e-i(ms+nt) dp(s, t)limn -JF
m,nEZ

Then we can state

Proposition 6.4. Let a E L' (G) and let p be a bounded measure on T2. If
p is concentrated on Z(a), then aµ = 0.
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Proof. We need to prove that (aµ)ij = 0 for all i, j E Z. Replacing a with
ax-iy-i, we see that it is sufficient to prove that (aµ)1 = 0. Now

(ap)1 = 1: amnµ-m,-n amn ei(ms+nt)dp(s, t)
JT2m,n m,n

/ f= E amneimseintdp(s, t) = J a(s, t)da(s, t) = 0,
(a)mn Z

as required.

Thus it is easy to construct zero divisors a in LP(G) by choosing a nonzero
p; all that we need to verify is that µ E LP(G). To make this verification, we
require theorems from Fourier analysis. Let a, b E R such that -7r < a < b <
ir, and let a E L1(G). Suppose Z(a) contains {(t,0(t)) I a < t < b} where
0: [a, b] -a [-7r, 7r] is smooth (i.e. infinitely differentiable). Define a measure
p on T2 by fr2 f da = fa f (t, 0(t)) dt for all measurable f. Then

e-i(mt+ne(t)) dtµmn =
b

a

and i 0 because [too = b - a. What we need is that m,nEZ I Am" I" < oo for
p large enough. This certainly will not be true in general, for example take
0 = 0. In fact ifdt (t) = 0 for all t E (a, b), then it is not difficult to see that
µ Co(G). This is not surprising in view of Theorem 6.1, which in this case
says that if Z(a) is contained in a finite union of lines with rational slope,
then a is a nonzero divisor in Co(G). Let us assume that there exists k E P
such that for each t E [a, b], there exists 1 E P such that 1 < k and ddt (t) # 0
(where l depends on t). We need the following result from Fourier analysis,
for which we refer to [57, §8.3].

Proposition 6.5. In the above situation, there exists A E R such that Iµmn I <
A(m2 + n2)-i/(2k) for all m, n E Z.

It now follows easily that if p > 2k, then >m,nEZ I pmn I' < oo and hence
µ E LP(G) for all p > 2k.

Example 6.6. Let a = 2xy - x + y - 2 E CG. Then a is a zero divisor in
LP(G) for allp >4.

Proof. For (s, t) E 2 (where -7r < s, t < 7r), we have &(s, t) = 2eiseit -
eis + eit - 2, thus &(s, t) = 0 when eit = 2e a+i. Therefore Z(a) _ {(t, 0(t))

t < 7r} where eiO(t) = 2e =+1+1 and we may write 6(t) = -i log (r)'
where we have taken the branch of log which satisfies log 1 = 0. It is easily
checked that 0 is smooth and dd (t) 0 for all t E (-7r, 7r)\{0}, in particular
for all t E [7r/4, 37r/4]. As above, define a measure p on T2 by fr2 f dp =
f34 a f (t, 0(t)) dt for all measurable f. We can now apply Proposition 6.5

with a = 7r/4 and b = 37r/4 to deduce that µ E LP(G) for all p > 4, and
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Proposition 6.4 to deduce that aµ = 0. Also ) # 0, so we have shown that a
is a zero divisor in LP(G) for all p > 4.

It is interesting to actually compute µ explicitly, though in the above example
this seems somewhat messy. We could define a measure v on T2 by fT.2 f dv =
f ",, f (t, 0(t)) dt for all measurable f, and then as above, v # 0 and av = 0.
Since de0 (t) = 0 when t = 0 or fir, we cannot assert from Proposition 6.5
that v E LP(G) for p > 4, but we do have dte(t) # 0 for t = 0 or fir, so we
can assert that v E LP(G) for all p > 6. We now determine vmn, which is

f e-i(mt+ze(t)) dt = jr e-imt (e-i°(t))n dt
J l 1

r2 / 2eit + 1 \ n
e-imt dt.

J0
eit+2

For m < 0 and n > 0 contour integration shows that vmn = 0, and then using
the substitution t --* -t, we see that vmn = 0 for m > 0 and n < 0. Also,
voo = 27r. Now the equality av = 0 yields 2vr$ - vr,s+l + 12r+1,s - 2v,-+1,s+1 = 0,
so we have a recurrence relation from which to calculate the other vey. This
determines v because v = r,s vrsxrys
Of course, this argument can be generalized to the case G = Zd where d > 2.
To state Puls's results in this case, we need the concept of Gaussian curvature.
We shall describe this here: for more details, see [57, §8.3]. Let S be a smooth
(d - 1)-dimensional submanifold of ]ltd and let xo E S. Then after a change
of coordinates (specifically a rotation), we may assume that in a sufficiently
small open neighborhood of x0, the surface is of the form {(x, 0(x)) I x E U},
where U is a bounded open subset of Rd-1 and 0: U -4 R is a smooth function.
Then we say that S has nonzero Gaussian curvature at x0 if the (d- 1) x (d- 1)
matrix

a20
(x0)axiaxj

is nonsingular. Then in [52], Puls proved the following.

Theorem 6.7. Let a E CZd where 2 < d E F, and suppose there exists
x0 E Z(a) such that there is a neighborhood S of xo in Z(a) which is a
smooth (d -1)-dimensional manifold. If S has nonzero Gaussian curvature at
x0, then a is a zero divisor in L1(G) for all p > d201'

He uses the above theorem to give the following set of examples of zero di-
visors in LP(G). Let G be the free abelian group of rank d and as before let
{ x 1 , .{x1, .. , Xd} be a Z-basis for G. Let

2d-1 1 da- E(xi+xT ).
i=1

Then a E C G and &(tl, ... , td) = a 1 - Ed1 cos ti. In a neighborhood of
(0, ... , 0, it/3), we have that Z(a) is of the form {(t, B(t)) I t E U}, where
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U is a bounded open neighborhood of the origin in Rd-1, t = (t1) ... , td_1),
and B(t) =cos-1(2d-12 - Edi_-11 cos tt). A computation shows that the matrix

(a ,J) is nonsingular at t = 0, hence Z(a) has nonzero Gaussian curvature.

Therefore a is a zero divisor in LP (G) for all p > d
Puls has also covered many other cases in [52], in which he requires the concept
of the "type" of a manifold (see [57, §8.3.2]). Let us say that M is a hyperplane
in Td if there exists a hyperplane N in Rd such that M = N fl [-7r, 7r]d. (We
have been a little sloppy here: what we really mean is that we consider Td
as [-7r, 7r]d with opposite faces identified, and let M' be the inverse image
of M in [-7r, 7r]d. Then we say that M is a hyperplane to mean that M' is
the intersection of a hyperplane in Rd with [-7r, 7r]d. Perhaps this is not a
very good definition because for example, it allows points to be hyperplanes.)
Then the results of [52] make it seem very likely that the following conjecture
is true.

Conjecture 6.8. Let G be a free abelian group of finite rank, and let a E CG.
Then a is a nonzero divisor in LP(G) for some p E P (where p > 2) if and
only if Z(a) is not contained in a finite union of hyperplanes. Furthermore
if a is a zero divisor in C0(G), then a is a zero divisor in LP(G) for some
p<00.

7. THE CASE p > 2 AND G FREE

This section also describes work of Mike Puls. It will show that when p > 2
and G is a nonabelian free group, then the answer to Problem 3.1 is even more
in the negative than in the case of G a noncyclic free abelian group of the last
section.
Let G denote the free group of rank two on the generators {x, y}, let En denote
the words of length non {x, y} in G, and let en = IEnI. Thus Eo = {1}, El =
{x, y, x-1, y-1}, E2 = {x2, y2, x-2, y-2, xy, yx, x-1y-1, y-1x-1, xy-1, y-1x,
x-1y, yx-1} etc. It is well known that en = 4 3n-1 for all n e P. We
shall let Xn denote the characteristic function of En, i.e.

Xn = E9ECG.
gEE,,

These elements of CG are often called radial functions and were studied in
[12], which is where some of the ideas for what follows were obtained.
Let

X4+...+
(

X2n+....0=1-1X2+
321

1
3 3)n

Then for p > 2,

11o11p + e1 + e2 + ... + en + .. .
3P 32p 3np

= 1 +
3

. 3-(p-1) +
3

. 3-2(p-1) + ... +
3

. 3-n(p-1) + .. .
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This is a geometric series with ratio between successive terms 3-(P-1), so it is
convergent when p - 1 > 1. It follows that O E LP(G) for all p > 2.
We now set 0 = x10 and show that 0 = 0. If m E lln, g E En,,, and g = 8192
with gl E El, then g2 E U E,n+1. Furthermore there is exactly one choice
for (91i 92) if g2 E Etra_1i and exactly three if 92 E E,n+1. It follows for n E N

that 0g = 0 for g E E2n, and 0g =
(-I3)n+l

= 0 for g E E2,,+,.(-13)n +3-
Thus we have shown that xl is a zero divisor in LP(G) for all p > 2.
Of course there are similar results for radial functions of free groups on more
than two generators, and these are established in [53].

8. GROUP VON NEUMANN ALGEBRAS

We saw in Section 6 and Theorem 6.7 that for p > 2, one can construct many
elements in CG which are zero divisors in LP(G). The situation for L2 (G) is
different, and there is evidence that the following conjecture is true.

Conjecture 8.1. Let G be a torsion free group. If 0 a E CG and 0 # 0 E
L2(G), then a/3 # 0.

The reason for this is that L2(G) is a Hilbert space, whereas the spaces LP(G)
are not (unless G is finite). Indeed L2(G) becomes a Hilbert space with inner
product

( ag9, Nhh) _ E agbg,
gEG hEG 9EG

where denotes complex conjugation. This inner product satisfies (ug, v) _
(u, vg-1) for all g E G, so if U is a right CG-submodule of L2(G), then so is
Ul. In the case of right ordered groups, the argument of Theorem 4.1 can be
extended to show (see [40, theorem IIJ)

Theorem 8.2. Let HiG be groups such that G/H is right orderable. Suppose
that nonzero elements of CH are nonzero divisors in L2(H). Then nonzero
elements of CG are nonzero divisors in L2(G).

Thus taking H = 1 in the above theorem, we immediately see that Problem 3.1
has an affirmative answer in the case G is right orderable.
As mentioned at the end of Section 4, a key ingredient in proving the classical
zero divisor conjecture is to embed the group ring in a division ring in some
nice way, and the same is true here. To accomplish this, we need the concept
of the group von Neumann algebra of G.
The formula of (3.1) also yields a multiplication L2(G) x L2(G) -* L°°(G)
defined by

ag9 /3g9 agx-1,3x) g.
gEG gEG gEG xEG

Now CG acts faithfully and continuously by left multiplication on L2(G), so we
may view CG C ,C(L2(G)). Let W(G) denote the group von Neumann algebra
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of G: thus by definition, W(G) is the weak closure of CG in C(L2(G)). For
9 E L(L2(G)), the following are standard facts.

(i) 0 E W(G) if and only if there exist On E CG such that limnio',(Onu, v) -+
(Ou, v) for all u, v E L2(G).

(ii) 0 E W (G) if and only if (Ou)g = O(ug) for all g E G.
Another way of expressing (ii) above is that 0 E W (G) if and only if 0 is a
right CG-map. Using (ii), we see that if 0 E W (G) and 01 = 0, then Og = 0
for all g E G and hence Oa = 0 for all a E CG. It follows that 0 = 0 and
so the map W(G) L2(G) defined by 0 H 01 is injective. Therefore the
map 0 H 01 allows us to identify W (G) with a subspace of L2 (G). Thus
algebraically we have

CG C W (G) C L2 (G).

It is not difficult to show that if 0 E L2 (G), then 0 E W (G) if and only if
Oa E L2(G) for all a E L2(G). For a = E9EG agg E L2(G), define a* =
EgEG

agg-1 E L2(G). Then for 0 E W(G), we have (Ou, v) _ (u, 0*v) for all
u, v E L2(G); thus 0* is the adjoint of the operator 0.
If 0 = EgEG O9g E W (G), then we define the trace map trG : W (G) C by
trG 0 = 01. Then for 0,0 E W (G), we have trG(0 + 0) = trG O+ trG ¢, trG O* =
trGO (where the bar denotes complex conjugation), trG(0O) = trG(OO), and
trG 0 = (01,1). For n E IF, this trace map extends to Mn(W (G)) by setting
trG 0 = E 1 0ii when 0 E Mn (W (G)) is a matrix with entries Oil in W (G), and
then trG 0¢ = trG 00 for 0 E Mn(W (G)). This will be more fully described in
Section 11. An important property of the trace map is given by Kaplansky's
theorem (see [42] and [38, proposition 9]) which states that if e E M,,(W(G))
is an idempotent and e 0 or 1, then trG e E R and 0 < trG e < n.
At first glance, it seems surprising that W (G) is useful for proving Conjec-
ture 8.1 because if G contains an element of infinite order, then W (G) contains
uncountably many idempotents, so it is very far from being a domain. How-
ever it has a classical right quotient ring U(G) which we shall now describe.
Let U denote the set of all closed densely defined linear operators [33, §2.7]
considered as acting on the left of L2 (G). These are maps 0: L -* L2 (G)
where L is a dense linear subspace of L2(G) and the graph {(u, Ou) I u E L}
is closed in L2(G)2. The adjoint map * extends to U and for 0 E U, it
satisfies (Ou, v) = (u, O*v) whenever On and O*v are defined. We now let U(G)
denote the operators in U "affiliated" to W (G) [5, p. 150]; thus for 0 E U,
we have 0 E U(G) if and only if O(ug) = (Ou)g for all g E G whenever Ou is
defined. Then U(G) = U(G)*, U(G) is a *-regular ring [4, definition 1, p. 229]
containing W(G), and every element of U(G) can be written in the form
'y8-1 where y E W (G) and b is a nonzero divisor in W (G) (see [5], especially
theorem 1 and the proof of theorem 10). On the other hand, the trace map
trG does not extend to U(G). Now a *-regular ring R has the property that
if a E R, then there exists a unique projection e E R (so e is an element
satisfying e = e2 = e*) such that aR = eR, in particular every element of R is
either invertible or a zero divisor. Therefore we have embedded W (G) into a
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ring in which every element is either a zero divisor or is invertible (so U(G) is a
classical right quotient ring for W(G)), and if 0 #) E U(G), then ()3*,3)n # 0
for all n E N. Furthermore it is obvious that if -y is an automorphism of G,
then -y extends in a unique way to automorphisms of W (G) and U(G). Given
a E L2(G), we can define an element & E U(G) by setting &u = au for all
u E CG. Then & is an unbounded operator on L2(G), densely defined because
CG is a dense subspace of L2(G) (of course & does not define an element of
G(L2(G)) in general, because the product of two elements of L2(G) does not
always lie in L2(G), only in L°°(G)). It is not difficult to show that & extends
to a closed operator on L2(G) (see the proof of Lemma 11.3), which we shall
also call &. Thus & is an element of U. Since &(ug) = (&u)g for all u E CG
and g E G, and CG is dense in L2(G), it follows (cf. [33, remark 5.6.3]) that
& E U(G). Thus we have a map L2(G) -* U(G) defined by a H & which is
obviously an injection. Algebraically, we now have

(8.1) CG C W(G) C L2(G) C U(G).

Similar properties to those of the above paragraph hold for matrix rings over
U(G). Let n E P. Then M,,(CG) acts continuously by left multiplication on
L2(G)n, and M,,(W(G)) is the weak closure of Mn(C'G) in C(L2(G)n). Also
M,, (U(G)) is the set of closed densely defined linear operators acting on the left
of L2(G)n which are affiliated to Mn(W(G)). For 8 E Mn(U(G)), the adjoint
9* of 9 satisfies (9u, v) _ (u, O*v) for u, v E L2(G)n whenever Ou and 9*v are
defined. If 9 is represented by the matrix (9th) where BYE E U(G), then 9* is
represented by the matrix (0j *J. Then Mn(U(G)) is a *-regular ring containing
Mn(W(G)), and every element of Mn(U(G)) can be written in the form a/3-1
where a E Mn(W(G)) and ,Q is a nonzero divisor in Mn(W(G)). Furthermore
every projection of Mn(U(G)) lies in Mn(W(G)) (use [5, theorem 1]). This
means that if a E Mn(U(G)), then aMn(U(G)) = eMn(U(G)) for a unique
projection e E Mn(W(G)). Thus we can define rankG a = trG e; the following
lemma (see [41, Lemma 2.3]) gives some easily derived properties of rankG;
part (ii) requires Kaplansky's theorem on the trace of idempotents mentioned
earlier in this section.

Lemma 8.3. Let G be a group and let 0 E Mn(U(G)). Then
(i) rankG 9a = rankG 9 = rankG a9 for all a E GLn(U(G)).
(ii) If 0 0 9 V GLn(U(G)), then 0 < rankG 9 < n.

Two other useful results are

Lemma 8.4. (See [39, lemma 13].) Let G be a group, let n E P, and let e, f
be projections in Mn(U(G)). If f = ueu-1 for some unit u E Mn(U(G)), then
f = vev-1 for some unit v E Mn(W(G)).

Lemma 8.5. Let G be a group, let n E P, and let e, f be projections in
Mn(U(G)). Suppose that eMn(U(G)) fl f Mn(U(G)) = 0 and eMn(U(G)) +
f Mn(U(G)) = hMn(U(G)) where h is a projection in Mn(U(G)). Then
trG e + trG f = trG h.
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Proof. This follows from the parallelogram law [4, §13]. Alternatively one
could note that e Mn (W (G)) fl f Mn (W (G)) = 0 and then apply [39, lem-
mas 11(i) and 12].

Suppose d, n E 1P, H < G are groups such that [G : H] = n, and {x1, . . . , x, } is
a left transversal for H in G. Then as Hilbert spaces L2(G)d =ED', xiL2(H)d,
hence we may view elements of C(L2(G)d) as acting on ®4 1 xiL2(H)d and
we deduce that we have a monomorphism ^: C(L2(G)d) G(L2(H)dn). It is
not difficult to see that ^ takes Md(W(G)) into Mdn(W(H)), which yields the
following result (cf. [2, (16) on p. 23])

Lemma 8.6. Let H <, G be groups such that [G : H] = n Goo, and let
d E P. If 0 E Md(W (G)), then trH B = n trG 8.

We can now explain the usefulness of U(G). Suppose we have proved Con-
jecture 8.1 for the torsion free group G. Then we have in particular that if
0 0 a E CG and 0 # 0 E W (G), then aO 54 0. Since U(G) is a classical right
quotient ring for W(G), it follows that a is invertible in U(G). Thus in the
special case that CG is a right order in a division ring (this will be the case
when G is elementary amenable: see Theorem 4.6), we can deduce that there
is a division ring D such that CG C D C_ U(G). This was exploited in [39] to
obtain the following result.

Theorem 8.7. Let G be a torsion free elementary amenable group. Then
there exists a division ring D such that CG C D C U(G).

Of course in the above theorem, D can be chosen so that CG is a right order
in D, see Theorem 4.6. In view of this theorem, it seems plausible that the
following conjecture is true.

Conjecture 8.8. If G is a torsion free group, then there exists a division ring
D such that CG C D C U(G).

Note that the above conjecture implies Conjecture 8.1. Indeed if 0 0 a E CG,
then the above conjecture shows that a is invertible in U(G), in particular
ao 54 0 for all 0 E U(G)\0. Then (8.1) shows that a,13 0 for all 0 E L2(G)\0.
Thus combining Theorems 8.2 and 8.7, we obtain the following.

Theorem 8.9. Let H a G be groups where H is torsion free elementary
amenable and G/H is right ordered. If 0 a E CG and 0 0 / E L2(G),
then a,13 54 0.

We conclude this section with an amusing example. Recall that the group G
is of exponential growth (see eg. [48, p. 219]) if there is a finite subset C of G
such that limni 1Cn11in > 1 (where C' denotes the subset of G consisting of
all products of at most n elements of C). We say G is exponentially bounded
if it does not have exponential growth.

Example 8.10. Let p be a prime, let d E ]ln, and let H be an exponentially
bounded residually finite p-group which can be generated by d elements. Write
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H = F/K where F is the free group of rank d, and write G = F/K'. Then
there exists a division ring D such that CG C D C_ U(G) and CG is a right
order in D.

Of course, any finite p-group will satisfy the hypothesis for H in the above
example (provided that H can be generated by d-elements), but then G will be
torsion free elementary amenable and we are back in the case of Theorem 8.7.
However there exist infinite periodic groups satisfying the above hypothesis
for H [21, 27]; also Grigorchuk has constructed examples of such groups. Now
a finitely generated elementary amenable periodic group must be finite [48,
§3.11], hence H and also G cannot be elementary amenable when H is infinite.
On the other hand, if H is chosen to be a periodic group, then it is easy to see
that G does not contain a subgroup isomorphic to a nonabelian free group.

Proof of Example 8.10. First we show that G is right orderable. Let {Fi/K I
i E Z} be the family of normal subgroups in H of index a power of p, and
set L =

I
F'. Then F/F' has a finite normal series whose factors are all

isomorphic to Z [22, §4, lemma 5], thus by the remarks just before Theorem 4.1
we see that F/F is right ordered and hence so is F/L. Now K' < L < K,
so L/K' is right ordered and we deduce that G is right ordered (again, use
the remarks on right ordered groups just before Theorem 4.1). It follows from
Theorem 4.1 that CG is a domain.
Since G is exponentially bounded, G is amenable by [48, proposition 6.8].
Now [58] tells us that if k is a field and M is an amenable group such that
kM is a domain, then kM is an Ore domain. Thus CG is a right order in a
division ring D. Since nonzero elements in CG are nonzero divisors in L2(G)
by Theorem 8.2, it follows that the inclusion of CG in L2(G) extends to a ring
monomorphism of D into U(G), and the result follows.

9. UNIVERSAL LOCALIZATION

The next step is to extend Theorem 8.7 to other groups. Since "most" (but
not all) nonelementary amenable groups contain a nonabelian free subgroup,
it is plausible to consider nonabelian free groups next. Here we come up
with the problem that although CG is a domain, it does not satisfy the Ore
condition. Indeed if G is the free group of rank two on {x, y}, then the fact that
(x-1)CGn(y-1)CG = 0 shows that CG does not satisfy the Ore condition. If
R is a subring of the ring S, the division closure [15, exercise 7.1.4, p. 387] of R
in S, which we shall denote by D(R, S), is the smallest subring of S containing
R which is closed under taking inverses (i.e. s E D(R, S) and s-1 E S implies
s-1 E D(R, S)); perhaps a better concept is the closely related one of "rational
closure" [15, p. 382], but division closure will suffice for our purposes. The
division closure of CG in U(G) will be indicated by D(G). Obviously if R
is an Artinian ring, then D(R, S) = R. In the case S is a division ring, the
division closure of R is simply the smallest division subring of S containing
R; thus Conjecture 8.8 could be restated as D(G) is a division ring whenever
G is torsion free. The following four elementary lemmas are very useful.
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Lemma 9.1. Let R C S be rings, let D denote the division closure of R in
S, and let n E P. If D is an Artinian ring, then Mn(D) is the division closure
of Mn(R) in Mn(S).

Proof. Exercise, or see [41, lemma 4.1].

Lemma 9.2. Let G be a group and let a be an automorphism of G. Then
aD(G) = D(G)* = D(G).

Proof. Of course, here we have regarded a as an automorphism of U(G), and
* as an antiautomorphism of U(G); see Section 8. The result follows because
aCG = CG* = CG.

Lemma 9.3. (cf. [41, lemma 2.1].) Let H < G be groups, and let D(H)G
denote the subring of D(G) generated by D(H) and G. Then D(H)G
D(H) * G/H for a suitable crossed product.

Proof. Let T be a transversal for H in G. Since h " tht-1 is an automorphism
of H, we see that tD(H)t-1 = D(H) for all t E T by Lemma 9.2, and so
D(H)G = >tET D(H)t. This sum is direct because the sum >tET U(H)t is
direct, and the result is established.

Lemma 9.4. Let H<G be groups such that G/H is finite, and suppose D(H)
is Artinian. Then D(G) is semisimple Artinian and is a crossed product
D(H) * G/H.

Proof. Let D(H)G denote the subring generated by D(H) and G. Then
Lemma 9.3 shows that D(H)G = D(H) * G/H, hence D(H)G is Artinian
and we deduce that D(H)G = D(G). Now D(G) = D(G)* by Lemma 9.2
and if 0 a E D(G), then (a*a)n # 0 for all n E N. Therefore D(G) has no
nonzero nilpotent ideals, and the result follows.

More generally for n E P, we denote the division closure of Mn(CG) in
Mn(U(G)) by Dn(G), and let Wn(G) = Dn(G) fl Mn(W(G)). Then we have
(see [41, proposition 5.1])

Proposition 9.5. Let G be a group and let n E P. Then
(i) If e is an idempotent in Dn(G), then there exists a E GL1(Dn(G))

such that eDn(G) = aeDn(G) and aea-1 is a projection; in particular
eDn(G) = fDn(G) for some projection f E Dn(G).

(ii) If a E Dn(G), then there exists a nonzero divisor ,Q E W,,(G) such that
/3a E Wn(G).

The following result shows that if D(G) is Artinian, then there is a bound on
the length of a descending chain of right ideals in D(G) in terms of the real
numbers tra e for e a projection in D(G).

Lemma 9.6. Let G be a group and let l E P. Suppose that D(G) is Artinian
and that l tra e E Z for all projections e E D(G). If Io > Il > ... > I, is a
strictly descending sequence of right ideals in D(G), then r < 1.
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Proof. Since D(G) is semisimple Artinian by Lemma 9.4, the descending se-
quence of right ideals yields nonzero right ideals J1i . . . , Jr of D(G) such that
D(G) = J l ® ®J,.. Write 1 = el + + er where ei E Ji. Then ez = ei
and eiej = 0 for i j (1 < i, j < r), hence

U(G) = eiU(G) ® . . . ® e,.U(G).

In view of Proposition 9.5(i), there exist nonzero projections fi E D(G) such
that eiD(G) = fiD(G) (1 < i < r). Then eiU(G) = fiU(G) and it now follows
from Lemma 8.5 that 1 = trG fl + + trG f,., upon which an application of
Kaplansky's theorem (see Section 8) completes the proof.

When constructing the classical right quotient ring of a ring D which satisfies
the right Ore condition, one only inverts the nonzero divisors of D, but for
more general rings it is necessary to consider inverting matrices. For any ring
homomorphism f, we shall let f also denote the homomorphism induced by f
on all matrix rings. Let E be any set of square matrices over a ring R. Then in
[15, §7.2], Cohn constructs a ring RE and a ring homomorphism A: R -+ RE
such that the image of any matrix in E under A is invertible. Furthermore RE
and A have the following universal property: given any ring homomorphism
f : R -* S such that the image of any matrix in E under f is invertible, then
there exists a unique ring homomorphism f : RE -* S such that 1A = f. The
ring RE always exists and is unique up to isomorphism, though in general A is
neither injective nor surjective. It obviously has the following useful property:
if 0 is an automorphism of R such that 9(E) = E, then 0 extends in a unique
way to an automorphism of RE.
Note that if R is a subring of the ring S, D = D(R, S), and E is the set of
matrices with entries in R which become invertible over D, then the inclusion
R " D extends to a ring homomorphism RE -* D. However even in the case
D is a division ring, this homomorphism need not be an isomorphism.
A notable feature of the above construction of RE, which is developed by Cohn
in [15, §7] and Schofield in [56], is that it extends much of the classical theory of
localization of Noetherian (noncommutative) rings to arbitrary rings. Indeed
if S is a subset of R which contains 1, is closed under multiplication, and
satisfies the Ore condition, then RS-1 'Rs. On the other hand, in general
it is not possible to write every element of RE in the form rs-1 with r, s E R.
There are "Goldie rank" versions of Conjecture 8.8. If k is a field, G is
polycyclic-by-finite, and A+ (G) = 1, then kG is a right order in a d x d matrix
ring for some d E P. The Goldie rank conjecture states that d = lcm(G). This
is now known to be true, and extensions of this were considered in [34]; in
particular it was proved that if k is a field, G is an elementary amenable group
with A+(G) = 1, and the orders of the finite subgroups of G are bounded,
then kG is a right order in an 1 x 1 matrix ring over a division ring where
l = lcm(G) [34, theorem 1.3]. The proof of this depends heavily on Moody's
Theorem, as described in Theorem 4.4. We describe two versions of the Goldie
rank conjecture.
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Conjecture 9.7. Let G be a group such that A+(G) = 1, and let E denote
the matrices with entries in CG which become invertible over D(G). Suppose
the orders of the finite subgroups of G are bounded, and l = lcm(G). Then
there is a division ring D such that D(G) = M1(D) ' CGr.

Conjecture 9.8. Let G be a group such that the orders of the finite subgroups
of G are bounded, and let 1 = lcm(G). If n E P and a E Mn(CG), then
l rankG a E N.

10. C*-ALGEBRA TECHNIQUES

There is a close connection between problems related to zero divisors in L2(G)
and projections in W(G). Indeed Lemma 12.3 states that if rankG 0 E Z
for all 0 E Mn(CG) and for all n E P, then Conjecture 8.8 is true, and of
course rankG0 is defined in terms of the trace of a projection in Mn(W(G))
(Section 8). Recall that the reduced group C*-algebra Cr (G) of G is the strong
closure (as opposed to the weak closure for W(G)) of CG in C(L2(G)): thus
CG C CT (G) C_ W (G). There is a conjecture going back to Kaplansky and
Kadison that if G is a torsion free group, then C,'. (G) has no idempotents
except 0 and 1 (this is equivalent to C,*. (G) having no projections except 0
and 1). The special case G is a nonabelian free group is of particular interest,
because at one time there was an open problem to as whether a simple C*-
algebra was generated by its projections. Powers [51, theorem 2] proved that
C,*. (G) is simple for G a nonabelian free group, so it was then sufficient to
show that C,*. (G) had no nontrivial projections, but this property turned out
to be more difficult to prove. However Pimsner and Voiculescu [50] established
this property, thus obtaining a simple C*-algebra ( C) with no nontrivial
projections. Connes [16, §1] (see [20] for an exposition) gave a very elegant
proof of the Pimsner-Voiculescu result, and his method was used in [41] to
establish Conjecture 8.8 in the case G is a free group. For further information
on this topic, see the survey article [59].
As has already been remarked, in view of Lemma 12.3 we want to prove
that trG e E Z for certain projections e. Now in his proof that Cr* (G) has no
nontrivial projections, this is exactly what Connes does. Once it is established
that trG e E Z, then the result follows from Kaplansky's theorem (§8). Of
course Connes is dealing with projections in C,; (G), while we are interested
in projections which are only given to lie in Mn(W(G)) for some n E FP, but
the Connes argument is still applicable. Connes uses a Fredholm module
technique in which he constructs a "perturbation" 7r of CT (G) where G is the
free group of rank two such that if CC (G) has a nontrivial projection, then
there is a nontrivial projection e E C,*. (G) such that the operator e - ire on
L2(G) is of trace class (though -7re C,(G)), and it follows that the trace of
e - ire is an integer [20, lemma 4.1]. He then shows that this trace is in fact
trG e [20, §5], thus proving that trG e E Z as required.
To apply Lemma 12.3 when G is the free group of rank two, we use the
same perturbation ir. This has the property that if 0 E MT(CG) for some
n E FP, then the resulting operators 0, 7r(0) on L2(G)n agree on a subspace of
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finite codimension. It follows that if e, e' are the projections of L2(G)n onto
im 9, im 9' respectively, then im (e - e') has finite dimension and therefore has
a well defined trace which is an integer. Then as in the previous paragraph,
this integer turns out to be trG e and we deduce that rankG 0 E Z as required.
The same arguments are applied in Lemma 12.2 for the case when G is a finite
direct product of free groups of rank two. For the purposes of trying to extend
this to other classes of groups, it seems necessary to have that 9, ir(9) agree on
a subspace of finite codimension: it is not enough for 9 - 7r(9) to have trace
class, because this does not imply that e - e' has trace class.
To construct the perturbation 7r, Connes uses the following result for free
groups (see [20, section 4], [32, corollary 1.5], [18, §3]). We say that a function
¢: X -* Y between the left G-sets X and Y is an almost G-map if for all
g E G, the set {x E X I g(ox) # ¢(gx)} is finite.

Theorem 10.1. Let n E N, let G be a free group of rank ic, let rcG denote
the free left G-set with rc orbits, and let {*} denote the G-set consisting of one
fixed point. Then there exists a bijective almost G-map ¢: G -4 KG U J*}.

In fact the above is the only property of free groups that Connes uses, and it is
also the only property of free groups used in [41] in establishing Conjecture 8.8
for G a free group. Thus it was of considerable interest to determine which
other groups satisfied the conclusion of the above theorem. However Dicks
and Kropholler [18] showed that free groups were the only such groups.
After proving Conjecture 8.8 for free groups, the following was established in
[41] (see [41, theorem 1.5] for a generalization).

Theorem 10.2. Let n E IP, let F < G be groups such that F is free, G/F
is elementary amenable, and A+(G) = 1, and let D1,(G) denote the division
closure of Mn(CG) in Mn(U(G)). Assume that the finite subgroups of G have
bounded order, and that l = lcm(G). Then there exists a division ring D such
that Dn(G) = Mrn(D).

Of course the special case l = n = 1 in the above theorem yields Conjecture 8.8
for groups G which have a free subgroup F such that G/F is elementary
amenable. The subsequent sections will be devoted to a proof of the following
result.

Theorem 10.3. Let F < G be groups, and let E denote the set of matrices
with entries in CG which become invertible over D(G). Suppose F is a direct
product of free groups, G/F is elementary amenable, and the orders of the
finite subgroups of G are bounded. Then D(G) is a semisimple Artinian ring
and the identity map on CG extends to an isomorphism CGE -* D(G). Fur-
thermore if e E D(G) is a projection, then lcm(G) trc e E Z for all projections
e E D(G).

It seems very plausible that it is easy to extend the above theorem to the
case when F is a subgroup of a direct product of free groups, and it certainly
would be nice to establish this stronger result. However subgroups of direct
products can cause more difficulty than one might intuitively expect, see for
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example [3]. In fact if H a G are groups such that G is torsion free, G/H is
finite, and H is a subgroup of a direct product of free groups, then it is even
unknown whether CG is a domain.
One can easily read off a number of related results from Theorem 10.3, for
example

Corollary 10.4. Let F < G be groups such that F is a direct product of free
groups and G/F is elementary amenable, let n E IE, and let Dn(G) denote
the division closure of Mn(CG) in Mn(U(G)). Suppose 0+(G) = 1 and the
orders of the finite subgroups of G are bounded, and set l = lcm(G). Then
Dn(G) Min(D) for some division ring D.

For further recent information on these analytic techniques, especially in the
case G is a free group, we refer the reader to the survey article [28].

11. L2(G)-MODULES

We define E = N U {oo}, where oo denotes the first infinite cardinal. Let
G be a group, and let L2(G)°° denote the Hilbert direct sum of oo copies of
L2(G), so L2(G)°D is a Hilbert space. Following [10, section 1], an L2(G)-
module 9-l is a closed right CG-submodule of L2(G)n for some n E E, an
L2(G)-submodule of 9l is a closed right CG-submodule of 9{, an L2(G)-ideal
is an L2(G)-submodule of L2(G), and an L2(G)-homomorphism or L2(G)-map
0: 9-t -* IC between L2(G)-modules is a continuous right CG-map. If X is an
L2 (G)-ideal, then X' is also an L2 (G)-ideal, so L2 (G) = X ® X -L as L2 (G)-
modules. The following lemma shows that there can be no ambiguity in the
meaning of two L2(G)-modules being isomorphic.

Lemma 11.1. Let 9-l and IC be L2(G)-modules, and let 0: 9-t -> IC be an
L2(G)-map. If kerb = 0 and imO = IC, then there exists an isometric L2(G)-
isomorphism 0: 9d -* K.

Proof. See [10, p. 134] and [45, §21.1].

Lemma 11.2. If U is an L2(G)-ideal, then U = uL2(G) for some u E U.

Proof. Let e be the projection of L2(G) onto U. Then e E W(G) because
U is a right CG-module, and eL2(G) = U. Thus el E U and we may set
u=el.
Lemma 11.3. Let n E IE, let u E L2(G)n, and let U = uCG. Then U is
L2(G)-isomorphic to an L2(G)-ideal.

Proof. Define an unbounded operator 0: L2(G) U by Oa = ua for all
a E CG. Suppose an E CG, an 0 and Ban -4 v where v E U\O. Choose a
standard basis element w = (0, 0, . . . , 0, g, 0, ...) E L2(G)n where g E G such
that (v, w) 0. Then

(v, w) = lim (uan, w) = lim (u, wan) = 0,
n-+oo n-,oo

a contradiction. Therefore 0 extends to a closed operator, which we shall also
call 0 (see [33, p. 155]). Note that im0 is dense in U. Using [45, §21.1, II],
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we may write B uniquely in the form 01b where b is a self adjoint unbounded
operator on L2(G) and 0: L2(G) -* U is a partial isometry. Since 0 is a right
CG-map, we see from the uniqueness of the factorization of 0 that 0 (and
?P) is also a right CG-map. Thus 0 induces an L2(G)-isomorphism from an
L2 (G)-ideal onto U, as required. 0

We shall say that an L2 (G)-module Il is finitely generated if there exist n E lP
and U 1 ,-- . , un E Il such that u1CG + + unCG is dense in W. Obviously if
Il and IC are finitely generated, then so is Il ® IC. The next lemma gives an
alternative description of this definition.

Lemma 11.4. Let Il be an L2(G)-module. Then IL is finitely generated if and
only if Il is isomorphic to an L2(G)-submodule of L2(G)n for some n E ]P,
and in this case there exist L2 (G) -ideals I,, . . . , In such that Il = Ii ® ... I.
Proof. First suppose that Il is isomorphic to an L2(G)-submodule of L2(G)n
where n E P. Write L2(G)n = U ® V where U = L2(G), V = L2(G)n-1,

and U±V. Let W be the orthogonal complement to U fl Il in I-l, and let
it be the projection of L2(G)n onto V. Then the restriction of it to W is
an L2 (G)-monomorphism, so by Lemma 11.1 W is isomorphic to an L2 (G)-
submodule of V. Using induction, we may assume that W is finitely generated
and isomorphic to a finite direct sum of L2 (G)-ideals. But Il = U n Il ® W
and U n Il is finitely generated by Lemma 11.2, so Il is finitely generated and
isomorphic to a finite direct sum of L2 (G)-ideals.
Now suppose Il is finitely generated, say u1CG + + unCG is dense in Il.
Let U = u1CG, let V = U1, and for i = 2, ... , n, write ui = u + vi where
ui E U and vi E V. Then Il = U ®V, v2CG + + vnCG is dense in V,
and U is isomorphic to an L2 (G)-ideal by Lemma 11.3. Using induction on n,
we may assume that V is isomorphic to an L2(G)-submodule of L2(G)n-1 for
some n E ]P, and the result follows. 0

Lemma 11.5. Let U, V and W be L2(G)-modules. If U ® W is finitely
generated and U ® W = V ® W, then U = V.

Proof. Since U ® W is finitely generated, Lemma 11.4 shows we may assume
that U ® W is an L2(G)-submodule of L2(G)n where n E P. Using U ® W
V ® W, we may assume that U ® W = V W1 where W = W1. If X is the
orthogonal complement of U ® W in L2 (G)", then

U®(W®X)=L2(G)n=V®(W1ED X)

and we need only consider the case X = 0.
Thus we have U®W = L2(G)n = V ®W1 where W '= W1. Let e and f denote
the projections of L2(G)n onto W and W1 respectively, and let 0: W -+ W1
be an isometric L2(G)-isomorphism. Then e, f E Mn(W(G)) because W and
W1 are L2(G)-submodules. Since

U®L2(G)n=U®V®Wl =V®U®W =V®L2(G)n,
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there is an isometric L2(G)-isomorphism ¢: U ® L2(G)n -+ V ® L2(G)n. If
V) = O ®0, then

:
L2(G)2n L2(G)2n

is a unitary operator which is also a right CG-map, so 0 can be considered as
an element Of M2n (W (G)). Set

E = diag(e,On) and F = diag(f,On).

Then E and F are projections in M2n(W (G)) and ,bE 1r 1 = F, so E and F
are equivalent [4, definition 5, §1]. By [4, proposition 8, §1],

diag(e, ln) and diag(f, ln)

are also equivalent projections. Now M,,(W(G)) is a finite von Neumann al-
gebra [4, definition 1, §15], [38, proposition 9], and satisfies "GC" [4, corollary
1, §14], so we may apply [4, proposition 4, §17] twice to deduce that

1 - diag(e,In) and 1 - diag(f,In)

are equivalent projections, and hence unitarily equivalent projections. There-
fore

(1 - e)L2(G)n = (1 - f)L2(G)n

and the result follows.

Lemma 11.6. Let W = L2(G)O°, let U be a finitely generated L2(G)-submodule
of 9-l, and let V = U1. Then V = 7d.

Proof. Using Lemma 11.4 and induction, we may assume that U is isomorphic
to an L2(G)-ideal. Write Ii = L1 ® L2 ®... where L, = L2(G) for all i E IP,
let Mn = ® 1 Li, let Xn denote the orthogonal complement of V fl Mn in
Mn, let Tn denote the orthogonal complement of V fl Mn in V fl Mn+1 (n E IP),
and let 7r denote the projection of fl onto U. Since Xn fl (V fl Mn) = 0 and
Xn C Mn, we see that Xn fl V = 0, hence the restriction of 7r to Xn is an
L2 (G)-monomorphism and we deduce from Lemma 11.1 that Xn is isomorphic
to an L2(G)-submodule of U. Therefore we may write Xn ®Yn = L2(G) for
some L2(G)-ideal Yn (n E IP). We now have

VnM.ED TnED Xn+1 Mn+1 = VnMnED Xn®Ln+1
V nMnED XnED Xn+1ED Yn+1,

thus by Lemma 11.5 we obtain Tn = Xn ® Yn+1, so we may write Tn = X;,
Yn+1 where Xn = X. and Yn = Yn (n E ]P). For n E ]P, set Fn = V fl Mn $ Xn.
Then Fn C_ Fn+1i so we may define En+1 to be the orthogonal complement of
F n in Fn+1 (n E IP); we shall set E1 = F1. Since F n V fl M n fl ) = Mn,
application of Lemma 11.5 yields En = L2(G) for all n E P. Now

VnMnCEl ®... EnCVnMn+1

for all n E IP, hence ®°_1 Ei = V and the result follows.
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An L2(G)-basis lei, e2.... } of the L2(G)-module f means that there exists
an isometric L2(G)-isomorphism 9: 9-l -* L2(G)n for some n E E such that
9(ei) = (0, ... , 0, 1, 0, ... ), where the 1 is in the ith position. If If,, f2.... } is
another L2(G)-basis of 9-l and a is the L2(G)-automorphism of 9-l defined by
aei = fi, then aa* = a*a = 1. Also we say that an L2(G)-map 9 has finite
rank if im 0 is finitely generated.
Suppose now 9l = L2(G)°° and that 9: 9-l -+ 9l is a finite rank L2(G)-map.
Let K = ker 0. Then the restriction of 9 to K' is an L2(G)-monomorphism, so
Kl is finitely generated by Lemma 11.4. Using Lemmas 11.4 and 11.6, there
exists n E P and an L2(G)-basis lei, e2.... } of fl such that im 9 + Kl C U
where U = e1CG + + enCG. We may represent 0 by a matrix (9ij) where
i, j E P and 9ij E W(G) for all i, j (so 0ei = ej0ji). Then we define
trG 9 trG 9ii, which is well defined because 9ii = 0 for all i > n.
Clearly if Ou is the restriction of 0 to U, then trG 0 = trG 9u (where trG 9U is
defined as in Section 8).
Let If,, f2.... } be another L2(G)-basis for 9-l. We want to show that if (Oij)
is the matrix of 0 with respect to this basis, then >°O1 trG Oii is an absolutely
convergent series with sum trG 0. Write fi = E°O1 e7a7 ai where aj7 j E W (G)=
and k= aikakj is an absolutely convergent series with sum bij for all i, j E P.
Then

n

trG Oii = (Ofi, f) _ (ejOjkaki, elali)
j,kj=1

n
*_ (ejOjkakiail, el)

j,k,l=1
n

E trG(9jkakiayj).
j,k=1

Now akiazj is absolutely convergent with sum Skj, hence E0019jkakia!-
is absolutely convergent with sum 9jk6kj, consequently E°_1 trG(9jkakia*) is
absolutely convergent with sum trG(9jkdkj). Therefore E°_1 trG Oii is abso-
lutely convergent with sum E k=1 trG(9jk6kj) = trG 9, as required.
Suppose now that 0, ¢: 9{ -4 9-l are finite rank L2(G)-maps. Let

M = (ker 9)1 + (ker ¢)1 + im 9 + im ¢.

Then M is finitely generated, so there exists n E P and an L2 (G)-submodule
L = L2(G)n of 91 containing M. Let it denote the projection of 9l onto L,
and if a : 9-l 9-l is an L2 (G)-map, then aL will denote the restriction of a
to L. Then 9 + 0, 90 and 00 have finite L2 (G)-rank, and

trG(O + 0) = trG(9 + cb)L = trG 9L + trG cbL = trG 0 + trG 0,

trG 00 = trG(9O)L = trG °LOL = trG OLBL = trG(lb9)L = trG 09.
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Also if a is an L2(G)-automorphism of 91, then air and Oa-1 are finite rank
L2 (G)-maps and 7rO = 0 = 07r, hence by the above

trGaOa-1 = trG(air)(Ba-1) = trG(Oa-1)(air) = trGO.

Suppose M is a finitely generated L2(G)-submodule of L2(G)m where m E E.
Then dimG M is defined to be trG e where e is the projection of L2(G)m onto
M (dimG is precisely dG of [10, p. 134]). In view of Kaplansky's theorem (see
Section 8), dimG M > 0 and dimG M = 0 if and only if M = 0. Let N be an
L2(G)-submodule of L2(G)" where n E E and N = M. Then

Ml ® L2(G)" = N1 ® L2(G)m,

hence there is a unitary L2(G)-map a of L2(G)m ® L2(G)" which takes M to
N. Therefore if f is the projection of L2(G)" onto N, then 0®f = a(e®0)a-1
and it follows that trG f = trG e. Thus dimG N = dimG M, in other words
dimG M depends only on the isomorphism type of M. If n E P and ¢ E
Mn(W(G)), we may view ¢ as an L2(G)-map L2(G)n -4 L2(G)", and then
dimG im 0 = rankG ¢. We need the following technical result.

Lemma 11.7. Let W = L2(G)°°, let 0: 91 -> 91 be an L2(G)-homomorphism,
and let {e1, e2.... } be an L2(G)-basis for W. For r, s E IE, r < s, let 9-1r,s =

(s#oo), let71r,,, and letU,.,s=
Bfr,s. Suppose for all i E P we can write 0ei as a finite sum of elements
E,,r=1 e, a, where aj E CG for all j (where r depends on i). If rankG 0 E Z for
all 0 E Mr (CG) and for all r E P, then dimG Ul,m fl Un,, E Z for all m, n E P.

Proof. Suppose a, b, c, d E P with a < b and b, c < d. Using the hypothesis
that Bei can be written as a finite sum of elements of the form e3aj where
aj E CG, there exists r E P, r > d such that Ul,d C 911,x. Define an L2(G)-
map 0: 9-1l,r -j l1,r by Oei = Bei if a < i < b or c < i < d, and 4 ei = 0
otherwise. Then with respect to the L2(G)-basis {el, ... , er} of 9-11,r the matrix
of 0 is in Mr(CG), so rankG 0 E Z. But im 0 = 0(9-la,b + fc,d) and it follows
that dimG Ua,b + U°,d E Z.
Let s E P with s > m, n. Using Lemma 11.1 we can obtain standard isomor-
phism theorems, in particular

(Ui,m + UU,s) ® (Ui,m fl Un,s) = U1,. ® Un,s.

Therefore dimG Ul,m + Un,s + dimG U1,m fl Un,s = dimG Ui,m + dimG Un,, and
we deduce from the previous paragraph that dimG U1,m fl U,,,, E Z. Thus as s
increases, dimG Ul,m fl Un,, forms an increasing sequence of integers bounded
above by dimG U1,,, hence there exists t E P such that dimG U1,m fl Un,, =
dimG Ul,m fl Un,t for all s >_ t. Therefore Ul,m fl Un,, = U1,m fl Un,t for all
s > t, and it follows that U1,m fl Un,. = U1,m fl U,,,t. We conclude that
dimG U1,m fl Un,m = dimG U1,,, fl Un,t E Z as required. 0
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12. THE SPECIAL CASE OF A DIRECT PRODUCT OF FREE GROUPS

Here we generalize the theory of [41, section 3]. If 9-l is a Hilbert space and G
is a group of operators acting on the right of f, then we define

,CG(W) = {B E £(f) I B(ug) = (Ou)g for all u E 'h and g E G}.

Note that von Neumann's double commutant theorem [1, theorem 1.2.1] (or
see (ii) after Theorem 8.2) tells us that

GG(L2(G)) = {B E G(L2(G)) I B(ug) _ (Bu)g for all g E G} = W(G).

Suppose now that H and A are groups, G == H x A, n E P, B E ICA(L2(G)),
¢ E Mn(GA(L2(G))), and 0 is represented by the matrix (0j3) where q2j E
GA(L2(G)) for all i, j. We make 0 act on L2(G)®L2(G)®L2(A) by 0(u, v, x) _
(Bu, Bv, 0), and ¢ act on L2 (G)n ®L2 (G)n T L2 (A)n by cb(u, v, x) _ (¢u, qv, 0)
(u, v E L2(G) or L2(G)n, x E L2(A) or L2(A)n). Note that the actions of 0
and 0 on L2(G) ® L2(G) ® L2(A) and L2(G)n ® L2(G)' ® L2(A)n are right
CA-maps.
Now let H be the free group on two generators, and let A act on the right of
A by right multiplication as usual; i.e. ab = ab for all a E A and b E A. We
also make H act trivially on A: thus ha = a for all a E A and h E H (though
h1H = h). Theorem 10.1 shows that there is a bijection 7r: H - HUHU{1A}
(where 1A is the identity of A) such that

(12.1) lr1H = IA,

(12.2) {k E H I h(irk) 0 ir(hk)} is finite for all h E H.

We extend it to a right A-map

(12.3) ir: G-*GUGUA
by setting ir(ha) = (irh)a for all h E H and a E A. This in turn defines
a unitary operator a: L2(G) -> L2(G) ® L2(G) ® L2(A), and hence also a
unitary operator (equal to the direct sum of n copies of a)

(12.4) 0: L2(G)n - L2(G)n ® L2(G)n ® L2(A)n.

We note that a and 3 are right CA-maps. Suppose E Mn (W (G)) and
¢ - /3-1qR has finite L2(A)-rank. Then we have

Lemma
N12.1.

trG 0 = trA(0 - Q-10/3)

Proof. (cf. [20, section 5].) Let (02j) denote the matrix of 0. Since cb j -
a-loija has finite L2(A)-rank for all i, j, trG 0 trG q51 and trA(( -0-100) = E4

1
trA(¢21 - a-1Otla), it will be sufficient to show that trG 0 =

trA(O - a-lea) for all 0 E W(G) such that 0 - a-10a has finite L2(A)-rank.
If 0 = E9EG 099 where O9 E C for all g E G, then trG B = 01 and (Bg, g) = B1
for all g E G. Using (12.1), we see that (07rh,7rh) = 01 for all h E H\1 and
(07r1, lrl) = 0, hence

((0 - a-10a)h, h) = 0 if h E H\1,
((0-a-10a)1,1)=01.
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Since H is an L2(A)-basis for L2(G), we can calculate trA 0 with respect to
this basis and the result follows.

Let G be a group, let n E P, let 0 E Mn(CG), and let X C_ G. If 0 = EgEG 099
where 09 E Mn(C), then supp0 is defined to be {g E G 109 0}, a finite
subset of G. Also L2(X) will indicate the closed subspace of L2(G) with
Hilbert basis X.

Lemma 12.2. Let H be the free group of rank two, let A be a group, let
G = H x A, let n E F, and let 0 E Mn (CG). If rankA 0 E 7L for all ¢ E Mr. (CA)
and for all r E F, then rankG 0 E Z.

Proof. Let 7r: G -* G U G U A be the bijection given by (12.3), and let
Q: L2(G)n -4 L2(G)n ®L2(G)n ® L2(A)n be the unitary operator given by
(12.4). Let

K = {k E H g(7rk) = 7r(gk) for all g E supp 0},

let J = H\K, let L1 = BL2(G)n, let L2 = /3-10,3L2(G)n, and let A denote
the projection of L2(G)n onto L. Then IJI < oo by (12.2), and j3-1A/3 is the
projection of L2(G)n onto L2. Since rankG 0 = trG A, we want to prove that
trGAE7L. _
Let M = BL2(KA)n, and let µ denote the projection of L2(G)n onto M. Note
that M = 0-10/3L2(KA)n because /-10Qu = Ou for all u E L2(KA)n. Let N1
and N2 denote the orthogonal complements of M in L1 and L2 respectively,
and let 77, and 772 denote the projections of L2(G)n onto N1 and N2 respectively.
Let P1 = 0L2(JA)' , let P2 = 0-10,3L2(JA)n, and for i = 1, 2, let Qi denote
the orthogonal complement of Pi n M in Pi. Note that M n Qi = 0 and
M + Qi is dense in Li (i = 1, 2). Thus if 7ri is the projection of Li onto Ni,
then the restriction of 7ri to Qi is an L2(A)-monomorphism with dense image,
so Ni = Qi by Lemma 11.1 (i = 1, 2). Therefore

(12.5) NiED (PinM)=Pi.
Using Lemma 11.4, we see that Ni is finitely generated, hence 771 - 772 has finite
L2 (A)-rank. Also A = It + 71, and Q-1 A/3 = IL + 12, hence A - 0-'A,6 = 77, - 772.
Therefore trG A = trA(A - 0-1A/) by Lemma 12.1, and since trA(771 - 712) =
trA 77, - trA 772, it will suffice to prove that trA 77, and trA 772 E Z. Now trA 77i =
dimA Ni so in view of (12.5), we require that dimA Pi n M and dimA Pi E 7L.
We apply Lemma 11.7: note that with respect to the standard L2(A)-basis
Hn of L2(G)n, the matrices of 0 and 0-10/3 have the required form for this
lemma. But P1 = 0L2(JA)n, P2 = /3-10QL2(JA)n, and M = 0L2(KA)n =
0-10/3L2(KA)n, and the result follows.

The proof of the following lemma is identical to the proof of [41, lemma 3.7].

Lemma 12.3. Let G be a group. If rankG 0 E Z for all 0 E M,,(CG) and for
all n E IF, then D(G) is a division ring.

Proof. We shall use the theory of [15, section 7.1]. Let R denote the rational
closure [15, p. 382] of CG in U(G), and let a E D(G)\0. By [15, exercise 7.1.4]
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D(G) C R, so we can apply Cramer's rule [15, proposition 7.1.3] to deduce
that a is stably associated over R to a matrix in M,n(CG) for some m E P.
Therefore there exists n > m such that diag(a, in-1) is associated over R to
a matrix 0 E Mn(CG), which means that there exist X, Y E GLn(U(G)) such
that X diag(a,1n_1)Y = 0.
Suppose a is not invertible in U(G). Using Lemma 8.3, we see that 0 <
rankG a < 1 and thus n - 1 < rankG 9 < n. This contradicts Lemma 12.2,
hence a is invertible in U(G). Since D(G) is closed under taking inverses,
D(G) must be a division ring.

Lemma 12.4. Let n E lP, and let G = H1 x ... x Hn where Hi is isomorphic
to the free group of rank two for all i. Then D(G) is a division ring.

Proof. By induction on n and Lemma 12.2, rankG 9 E Z for all 0 E Mn(CG)
and for all n E P. Now use Lemma 12.3.

Lemma 12.5. Let H < G be groups such that G/H is free, let 4) denote
the matrices over CH which become invertible over D(H), and let E denote
the matrices over CG which become invertible over D(G). Suppose D(G)
is a division ring. If the identity map on CH extends to an isomorphism
0: CHI -+ D(H), then the identity map on CG extends to an isomorphism
o,: CGE -* D(G).

Proof. By Lemma 9.3, we may view E9EG D(H)g as D(H) * [G/H]. Suppose
H C N < K C_ G and K/N = Z with generator Nt where t E K. Then if
di E D(N) and >i diti = 0, it follows that di = 0 for all i, which means in
the terminology of [31, §2] that D(G) is a free division ring of fractions for
D(H) * [G/H]. Therefore D(G) is the universal field of fractions for D(H) *
[G/H] by the theorem of [31] and the proof of [37, proposition 6]. Since
D(H) * [G/H] is a free ideal ring [14, theorem 3.2], the results of [15, §7.5]
show that D(G) = D(H) * [G/H]1, for a suitable set of matrices ' with
entries in D(H) * [G/H]. The proof is completed by applying [56, proof of
theorem 4.6] and [15, exercise 7.2.8].

Lemma 12.6. Let G <, F be groups such that F is a direct product of finitely
generated free groups, and let E denote the set of matrices over CG which
become invertible over D(G). Then D(G) is a division ring, and the identity
map on CG extends to an isomorphism CGE -* D(G).

Proof. We may write F = F1 x . . . x Fn where n E P and the Fi are finitely
generated free groups, and since any finitely generated free group is isomorphic
to a subgroup of the free group of rank 2, we may assume that each Fi is free
of rank 2. Then D(F) is a division ring by Lemma 12.4, hence D(G) is a
division ring. Write Hi = F1 x x Fi for 0 < i < n (so Ho = 1). Then
(G fl Hi)/(G fl Hi-1) is isomorphic to a free group for all i, so we can now use
Lemma 12.5 and induction on n to complete the proof.

13. PROOF OF THEOREM 10.3

To simplify the notation in the following lemma, we assume that 1, 2.... E Z.
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Lemma 13.1. Let {Hi
I

i E Z} be a family of nonabelian free groups, let
G = Hl x H2 x , and let 0 be an automorphism of G. Then OH1 = Hi for
some i E Z.

Proof. Suppose g = (gl, g2, ...) E G where gi E Hi for all i. Then

CG(g) = CH1 (gl) x CH2(g2) X ...

and CH,(gi) = Z if gi 1, and CH,(gi) = Hi if gi = 1. It follows that
Z(CG(g)) = 7G', where Z(CG(g)) denotes the center of CG(g) and r = I {i

I

gi 1}I.
Let x, y E Hl\1. Then by the above we have Ox E Hi and Oy E H3 for some
i, j E Z. If i # j, then (x, y) = 7L x Z which is not possible. Therefore i = j
and the result follows.

Lemma 13.2. Let H < G be groups such that H is a direct product of non-
abelian free groups and G/H is finite. Let X be a finite subset of G. Then
there exists a finitely generated subgroup Go of G such that X C Go and GonH
is a direct product of nonabelian free groups.

Proof. By enlarging X if necessary, we may assume that HX = G. Let H
be the direct product of the nonabelian free groups Hi. Using Lemma 13.1
we see that G permutes the Hi by conjugation, so we may write H = xiKi
where Ki = Kil x . . . x Kim,, with the Kii nonabelian free groups (so each
Kid is an Hk for some k), and for each i the set {Kil, . . . , Kim, } is permuted
transitively by conjugation by G. For each i, let Ni denote the normalizer
of Kil in G, and then choose right transversals Si C_ X for H in Ni, and
Ti C_ X for Ni in G; thus ITi I = mi and we may write Ti = {til, ... ) tim, }

where Kij. Set Ho = Hfl (X) and note that since it is a subgroup
of finite index in a finitely generated group, it is also finitely generated, so
we may write Ho C K1 x x Ktt for some n E P, and then there are finite
subsets Yi C Kid (1 < i < n and 1 < j < mi) such that Ho C (Ui,i Yj).
Then we may choose finitely generated nonabelian free subgroups Kil of Kil
such that

Yjc t l kilti.7 for j = 1, ... , mi.

Set Lil = (s-1Kils I s E Si) and

Li = ti11Li1til X t121Li1ti2 X ... X

Then Lil and hence also Li is a finitely generated subgroup. Also if i, j E IF'
with i < n, j < mi and x E X, then we may write tijx = hstik for some
h E Ho, s E Si and k E Iln, and then and we deduce
that X normalizes Li. Therefore if L = L1 x . . . x L,,, then L is a finitely
generated subgroup and X normalizes L. Moreover L11 is a free group because
it is a subgroup of the free group K11i and it is nonabelian because it contains
the nonabelian subgroup kill hence L is a direct product of nonabelian free
groups. Thus we may set Go = L(X) for the required subgroup.
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For the purposes of the next two lemmas, given a group G and n E F, we shall
define SnG to be the intersection of normal subgroups of index at most n in
G. Note that SnG is a characteristic subgroup of G and that SnG D Sn+1G
for all n E P. Furthermore if G is finitely generated, then G/SnG is finite.

Lemma 13.3. Let F a G be groups such that F is finitely generated free and
G/F is finite. Suppose for all n E IF, there exists Hn < G such that HnF = G
and Hn n F = SnF. Then there exists H <, G such that HF = G and
HnF=1.
Proof. Since SnF is a normal subgroup of finite index in G, there are only
finitely many subgroups of G which contain SnF, hence an application of the
Konig graph theorem shows we may assume that Hn Hn+1 for all n E P. It
follows that if d denotes the profinite completion of G, then G has a subgroup
K isomorphic to G/F.
We shall now use the notation and results of [60]. Since G has a free subgroup
of finite index, we see from [17, theorem IV.3.2] that G is isomorphic to the
fundamental group of a graph of groups 7r, (Qj, r) with respect to some tree
T, where r is a finite graph of groups, and the vertex groups G(v) are finite
for all vertices v of F. Then we can form the fundamental group 111(8, r, T)
in the category of profinite groups, and by construction, IIl (g, r, T) =' G [60,
p. 418]. Of course the vertex groups G(v) are the same as the vertex groups
G(v). By [60, theorem 3.10] and the fact that K is a finite subgroup, we see
that K C gC(v)g-1 for some vertex v of r and some g E G. Thus G has a
subgroup isomorphic to G/F and the result follows.

Lemma 13.4. Let 1 E F, and let H .1 G be groups such that G is finitely
generated, G/H is finite, and H is a direct product of nonabelian free groups.
Assume that whenever K 4 G such that K C_ H and G/K is abelian-by-finite,
then G/K has a subgroup of order 1. Then G has a subgroup of order 1.

Proof. Write H = H1 x ... x Ht where the Hi are nonabelian free groups, and
set H(n) = SnH1 x . . . x SnHt for n E P. Note that if K a G and G/K is
abelian-by-finite, then H(n) C_ K for some n E P and that H/H(n) is torsion
free.
First we reduce to the case IG/HI = 1. We know by hypothesis that G/H('n)
has a subgroup Ln/HHf) of order l for all n E P. Since H/H'nl is torsion free,
we see that Ln n H = H('n) and therefore ILnH/HJ = 1. Now G/H has only
finitely many subgroups of order 1, hence there exists a subgroup Go/H of
order l in G/H with Ln C Go for infinitely many n. Thus replacing G with
Go, we may assume that IG/HJ = 1.
We now use induction on t, the case t = 1 being a consequence of Lemma 13.3.
Suppose we can write H = F1 x F2 where F1, F2 a G and each Fi is a direct
product of a proper subset of {H1, ... , Ht}. Then by induction on t there
exists Gl S G such that F1 C Gl and IG1/F1J = 1. The natural injection
Gl " G induces an isomorphism Gl " G/F2, so again using induction we
see that G1, and hence also G, has a subgroup of order 1. Therefore we may
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assume that no such decomposition H = F1 x F2 as above exists. It now
follows from Lemma 13.1 that G permutes the H, transitively by conjugation.
Let Dn be the normalizer of H1 in Ln, and let Z = H2 x .. x Ht. Then Dn His
the normalizer of both H1 and Z in G for all n E IF, so we may set D = DnH
for all n. Since DnH = D and Dn n H = H(n) for all n E IF, we have from the
case t = 1 that D/Z has a subgroup of order ID/HI. Thus D/Z is isomorphic
to a semidirect product of H1 and D/H, so we may apply [30, theorem 3) to
obtain a subgroup of G isomorphic to G/H, which is what is required.

Lemma 13.5. Let G = UiEZ Gi be groups such that given i, j E Z, there
exists l E I such that Gi, Gj C Gi, let E denote the matrices with entries in
CG which become invertible over D(G), and let Ei denote the matrices with
entries in CGi which become invertible over D(Gi). Assume that the orders
of the finite subgroups of G are bounded, and that D(Gi) is an Artinian ring
for all i E Z. Suppose lcm(Gi) trG; e E Z whenever e is a projection in D(Gi),
for all i E Z. Then

(i) D(G) = UiEZ D(Gi) and lcm(G) trG e E Z for all projections e E D(G).

(ii) D(G) is a semisimple Artinian ring.
(iii) Suppose the identity map on CG extends to an isomorphism Ai : CGiE -4

D(Gi) for all i E Z. Then the identity map on CG extends to an iso-
morphism A: CGE -+ D(G).

Proof. (i) This is obvious.

(ii) If Io > I, > > Ir is a strictly descending sequence of right ideals in
D(G), then

is a strictly descending sequence of right ideals in D(Gi) for some i E Z, hence
r < lcm(G) by (i) and Lemma 9.6. This shows that D(G) is Artinian, and
the result now follows from Lemma 9.4.

(iii) Since every matrix in E, becomes invertible over CGE, we see that there
are maps µi: CG,E -4 CGE which extend the inclusion map CGi - CG.
Now .i is an isomorphism for all i E T, hence there are maps vi: D(Gi) -*
CGE defined by v, = µ0 which extend the inclusion map CGi -+ CG. If
G, C_ G; and Oil: D(Gi) -> D(Gj) is the inclusion map, then vjzbij = vi and
it follows that the v, fit together to give a map v: UiE1 D(G,) --+ CGE such
that vz', = v,, where Oi : D(Gi) -j UiEZ D(Gi) is the natural inclusion. But
UtiEID(Gi) = D(G) by (i), and we deduce that v: D(G) --3 CGE is a map
which extends the identity on CG. By the universal property of CGE, there
is a map A: CGE --* D(G) which also extends the identity on CG. Then uA
is the identity on CGE and Av is the identity on D(G), and we deduce that A
is an isomorphism, as required.

We need the following three technical lemmas.
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Lemma 13.6. (cf. [41, lemma 4.4].) Let Q be a semisimple Artinian ring,
let G = (x) be an infinite cyclic group, let Q * G be a crossed product, and let
S be the set of nonzero divisors of Q * G. Let R be a ring containing Q * G,
and let D be the division closure of Q * G in R. Suppose every element of
Q * G of the form 1 + qlx + + gtxt with qi E Q and t E IF' is invertible in
R. Then Q * G is a semiprime Noetherian ring and D is an Artinian ring.
Furthermore every element of S is invertible in D, and the identity map on
Q * G extends to an isomorphism Q * Gs -* D.

Lemma 13.7. Let H c G be groups, let D(H)G denote the subring generated
by D(H) and G in D(G), and let E denote the matrices with entries in CH
which become invertible over D(H). If the identity map on CH extends to
an isomorphism GHE -4 D(H), then the identity map on CG extends to an
isomorphism CGE -4 D(H)G.

Proof. This follows from Lemma 9.3 and [41, 4.5]

Lemma 13.8. (See [41, lemma 4.7].) Let D be a *-ring, let R be a set of
subrings of D, let n E F', and let e E Mn(D) be an idempotent. Assume that
whenever R E R and P is a finitely generated projective R-module, there exist
projections fi E R such that P ?' ® fiR. If the natural induction map

® Ko(R) -4 Ko(D)
RE1Z

is onto, then there exist r, s E P, R1.... , .Rs E R, and projections fi E Ri
(1 < i < s) such that

diag(e, 1r, 0s) = u diag(f1, 0n+r)u-1fs
where u E GLn+r+s(D).

The essence of the next two lemmas is to show that if Theorem 10.3 holds
for the group Go and G/Go is finitely generated abelian-by-finite, then it also
holds for G. This is to prepare for an induction argument to follow.

Lemma 13.9. Let H < G be groups such that G/H is free abelian of finite
rank, let D(H)G denote the subring of D(G) generated by D(H) and G, and
let S denote the nonzero divisors in D(H)G. Suppose D(H) is an Artinian
ring. Then D(H)G is a semiprime Noetherian ring and D(G) is an Artinian
ring. Furthermore every element of S is invertible in D(G), and the identity
map on D(H)G extends to an isomorphism from D(H)Gs to D(G).

Proof. By induction on the rank of G/H, we immediately reduce to the case
G/H is infinite cyclic, say G = (Hx) where x E G. Since D(H) is semisimple
by Lemma 9.4 and D(H)G = D(H) *G/H by Lemma 9.3, we are in a position
to apply Lemma 13.6. If a = 1 + qlx + + gtxt E D(H)G where t E P and
qi E D(H), then by Proposition 9.5(ii) there is a nonzero divisor ,Q in W(H)
such that Qqi E W(H) for all i. Using [40, theorem 4], we see that ,Qary 0
for all ry E W(G)\0, and we deduce that a is invertible in U(G). The result
now follows from Lemma 13.6.
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Lemma 13.10. Let N 4 H a G be groups such that N < G, H/N is free
abelian of finite rank, and G/H is finite. Let D(N)G denote the subring of
D(G) generated by D(N) and G, and let S denote the nonzero divisors of
D(N)G. Suppose D(N) is an Artinian ring. Then

(i) D(N)G is a semiprme Noetherian ring and D(G) is a semisimple Ar-
tinian ring. Furthermore every element of S is invertible in D(G), and
the identity map on D(N)G extends to an isomorphism from D(N)Gs
to D(G).

(ii) Let 1 denote the matrices of CN which become invertible over D(N),
and let E denote the matrices of CG which become invertible over D(G).
If the identity map on CN extends to an isomorphism CND -> D(N),
then the identity map on CG extends to an isomorphism CGn - D(G).

(iii) Suppose m, n E P and the orders of the finite subgroups of G are bounded.
If m lcm(F) trF e E Z whenever FIN E .F(GIN) and e is a projection
in D(F), then m lcm(G) trG e E 7G for all projections e in Mn(D(G)).

Proof. (i) This follows from Lemmas 9.4 and 13.9.
(ii) Lemma 13.7 shows that the identity map on CG extends to an isomorphism
D(N)G -* CGI,. We now see from (i) and the proof of [56, theorem 4.6]
that D(G) is CGp for a suitable set of matrices' with entries in CG. An
application of [15, exercise 7.2.8] completes the proof.
(iii) Using (i), we see that D(N)G is Noetlerian and that D(G) = D(N)GS-1,
so it follows from [34, lemma 2.2] that the natural inclusion D(N)G -* D(G)
induces an epimorphism Go(D(N)G) -+ Go(D(G)). Now D(F) = D(N)*F/N
whenever FIN E .F(GIN) by Lemma 9.4, and D(N)G = D(N) * GIN by
Lemma 9.3, so we can apply Moody's induction theorem (Lemma 4.4) to
deduce that the natural map

® Go(D(F)) -* Go(D(G))
F/NE.F(G/N)

is also onto. Since D(G) and D(F) are semisimple Artinian by (i), we have
natural isomorphisms Ko(D(G)) = Go(D(G)) and Ko(D(F)) ^_' Go(D(F)) for
all F such that FIN E .F(G/N), and we conclude that the natural induction
map

® Ko(D(F)) - Ko(D(G))
F/NE.F(G/N)

is onto. When FIN E .F(G/N), we see from Lemma 9.4, that D(F) is
semisimple Artinian, hence every indecomposable D(F)-module is of the form
eD(F) for some idempotent e E D(F) and in view of Proposition 9.5(i),
we may assume that e is a projection. We are now in a position to apply
Lemma 13.8, so we obtain r, s E P, F1/N,.. . , FS/N E .F(G/N), and projec-
tions fi E D(Fi) such that

diag(e, 1r, 0s) = u diag(fl, , fs, 0n+r)u-1
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where u E GLn+,.+s(D(G)). Applying Lemma 8.4, we may assume that u E
hence

trGe+r=trG fl+ +trGfs
and the result follows.

The following result could easily be proved directly, but is also an immediate
consequence of the above Lemma 13.10(iii) (use the case G = N and note
that the orders of the finite subgroups of G all divide 1).

Corollary 13.11. Let G be a group such that D(G) is Artinian, and let
1, n E P. If l trG e E Z for all projections e E D(G), then l trG e E Z for
all projections e E Mn(D(G)).

Lemma 13.12. Let H i G be groups such that JG/HI < oo and H is a direct
product of nonabelian free groups, let l = lcm(G), and let E denote the set of
matrices with entries in CG which become invertible over D(G). Then

(i) D(G) is a semisimple Artinian ring.
(ii) The identity map on CG extends to an isomorphism CGE -* D(G).

(iii) If e E D(G) is a projection, then l trG e E Z.

Proof. Let {Xi I i E Z} denote the family of finite subsets of G. For each
i E Z, there is by Lemma 13.2 a finitely generated subgroup Gi containing Xi
such that Gi (1 H is a direct product of nonabelian free groups. Let Ei denote
the matrices over CGi which become invertible over D(Gi).
If (i), (ii) and (iii) are all true for all i E I when G is replaced by Gi and E
by Ei, then the result follows from Lemma 13.5 so we may assume that G is
finitely generated.
Lemma 13.4 now shows that there exists K < G such that K C_ H, G/K
is abelian-by-finite, and lcm(G/K) = 1. Using Lemma 12.6, we see that
D(K) is a division ring and that the identity map on CK extends to an
isomorphism CKI, -* D(K), where 1 denotes the matrices with entries in
CK which become invertible over D(K). Therefore the only projections of
D(K) are 0 and 1, so trK e E Z for all projections e E D(K).
Let F/K E Y(G/K), let [F : K] = f, let {xl,... , xf} be a transversal
for K in F, let e E D(F) be a projection, and let W(F) -4 M f(W(K))
denote the monomorphism of Lemma 8.6. In view of the previous paragraph,
Corollary 13.11 tells us that trK h E 7G for all projections h E Mf(D(K)).
Since e E W(F), we may write e = E eixi where ei E W(K) for all i. Using
Lemma 9.3, we deduce that ei E D(K) for all i, and it is now not difficult
to see that e E M f(D(K)). Therefore trK e E 7L by Corollary 13.11, and we
conclude from Lemma 8.6 that f trF e E Z. But f 11 and the result follows
from Lemma 13.10.

Proof of Theorem 10.3. Replacing F with F, we may assume that F is a
direct product of nonabelian free groups. We now use a transfinite induction
argument, and since this is standard when dealing with elementary amenable
groups, we will only sketch the details. If Y is a class of groups, then H E L Y
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means that every finite subset of the group H is contained in a Y-subgroup,
and B denotes the class of finitely generated abelian-by-finite groups. For each
ordinal a, define X,, inductively as follows:

Xo = all finite groups,

X,, = (LXa_1)l3 if a is a successor ordinal,

Xc. = U Xp if a is a limit ordinal.
/i<a

Then Ua,o X,, is the class of elementary amenable groups [34, lemma 3.1(i)].
Let a be the least ordinal such that G/F E Xa. If a = 0, the result follows
from Lemma 13.12. The use of transfinite induction now means that we have
two cases to consider.
Case (i) The result is true with H in place of G whenever H/F is a finitely
generated subgroup of G/F. Here we use Lemma 13.5.
Case (ii) There exists H <G such that F C_ H and G/H is finitely generated
abelian-by-finite, and the result is true with E in place of G whenever E/H
is a finite subgroup of G/H. Here we use Lemma 13.10.

Proof of Corollary 10.4. By Theorem 10.3, we know that D(G) is semisimple
Artinian so if D(G) is not simple Artinian, then there is a central idempotent
e E D(G) such that 0 # e # 1. Using Proposition 9.5(i), we deduce that
e E W (G). Since geg-1 = e for all g E G, we see that {gxg-1 I g E G} is finite
whenever x E G and ex 54 0, hence e E D(A(G)) where 0(G) denotes the
finite conjugate center of G [47, §5]. But A+(G) = 1, hence A(G) is torsion
free abelian by [47, lemma 5.1(ii)] and it now follows from Theorem 10.3 that
trG e E Z. Therefore e = 0 or 1 by Kaplansky's theorem (§8), a contradiction,
thus D(G) is simple Artinian and we may write D(G) = Mm(D) for some
m E F and some division ring D.
It remains to prove that m = 1. Using Lemma 9.6 and Theorem 10.3, we see
that m < 1. Now let F E .F(G) and set f = j > 9EF g, a projection in CF.
Write 1 = el + + e,. + + em where the ei are primitive idempotents
of D(G), 1 < r < m, and f = el + + e,.. By Lemma 9.5(i), there are
projections fi E D(G) such that fiD(G) = eiD(G) (1 < i _< m), and then
application of Lemma 8.5 shows that trG fl + + trG fm = 1. Also for each
i, there exists a unit ui E D(G) such that ui fiub 1 = fl, and by Lemma 8.4
we may assume that ui E W(G) for all i. Therefore trG fi = trG fl for all i
and we deduce that trG fi = 1/m for all i. Another application of Lemma 8.5
shows that trG f = trG fl + + trG f, and we conclude that 1/IF1 = r/m.
Therefore JFl divides m for all F E F(G), hence 11m and we have proven the
result in the case n = 1. The case for general n follows from Lemma 9.1 and
Corollary 13.11.
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1. Introduction
Given a finitely generated group G, R. Bieri and B. Renz introduced in 1988
two descending chains

Hom(G,1I) D E'(G,7G) 2 E2(G,7G) 2 E3(G,7G) 2

II II IU IU

Hom(G, R) 2 E' (G) 2 E2 (G) D E3 (G) D

of conical subsets of the real vector space Hom(G, ]R), the homological and
homotopical geometric invariants E` (G, Z) and E* (G) [BiRe, Re2]. They con-
tain rather detailed information on the structure of the group G, for example:

(i) Em(G, Z) and Em(G) characterize the normal subgroups of G with abel-
ian quotient that are of type FPm and of type Fm, respectively.

(ii) If G is metabelian, E' (G) = E' (G, Z) carries the information whether G
is finitely presented or not. Moreover, it is conceivable that in this case
E' (G) also determines the higher finiteness properties "type FPm" and
the higher geometric invariants Em (G) C E"' (G, 7L) for m > 2.

In general, the geometric invariants are difficult to compute and not much
is known about the higher ones. It is the aim of this article to present the
progress that has been made in the study of the invariants for soluble-by-finite
groups of finite Prilfer rank.
The paper is organized as follows. In Section 2 we introduce the geomet-
ric invariants, and Section 3 contains a method for "computing" E' (G) for
soluble-by-finite groups of finite Priifer rank. In Section 4 we will be concerned
with the relationship between E' (G) and finiteness properties of metabelian
(or more general soluble) groups. Finally, Section 5 is devoted to the higher
invariants.



250 H. Meinert

1.1. The basic settings
Throughout this article G always denotes a finitely generated group, R a com-
mutative ring with non-trivial unity, M a (left) module over the group ring
RG, and m a non-negative integer or oo.
If we endow Hom(G,18) with the compact-open topology, where G carries the
discrete and R the usual topology, then Hom(G, R) becomes a real topological
vector space, its dimension d being the torsion-free rank of the abelianization
G/G'. A concrete model is given by choosing an epimorphism V : G -* Zd C
1184 and identifying the vector x E Rd with the homomorphism G -* R,
g H (x, i9(g)), where is the standard scalar product in Rd.
A rationally defined open half space of Horn(G, R) is a subset of Hom(G,
of the form {x I x(g) > 0}, defined by some g E G.

2. The geometric invariants
In this section we define the geometric invariants and state some of their main
features. We start by recalling some general definitions.

2.1 Finiteness properties A module over a ring A (with 1 # 0) is said
to be of type FPm over A if it admits a projective resolution over A with
finitely generated modules in all dimensions < m + 1. A monoid r is said to
be of type FPm over R if the trivial RF-module R is of type FPm over the
monoid ring RT. If R = Z we merely say that r is of type FP,,,. Following
C.T.C. Wall we say that a CW-complex is of type F. if it has finitely many
cells in each dimension < m + 1. By definition, a group r is of type Fm if
there exists a K(F,1)-complex of type Fm.
Any group is of type FO and FPO over any R. Moreover, the implications
(finitely generated t* Fl FP, over R), and (finitely presented q F2
FP2 over R), and (Fm FPm FPm over R) are true for all groups and all
R. For finitely presented groups F. and FPm are equivalent. It is an open
question whether FP2 implies F2, but non-finitely-presented groups which are
FP2 over any field exist (see Section 4). For more details the reader is referred
to [Bil, Brl].

2.2 The homological invariants For a given homomorphism x : G -4
we consider the submonoid G,, = {g E G I x(g) > 0} and ask whether the
RG-module M is of type FPm over the monoid ring RGx. The answers are
codified in the homological invariants

ER (G, M) = {x E Hom(G, R) I M is of type FPm over RGX} .

We set Em(G, M) = Ea (G, M) and denote by ER (G, M)° and Em(G, M)` the
complements of the indicated sets in Hom(G,R), respectively. By ER(G, R)
we shall always mean the invariants of the trivial RG-module R.
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In contrast to the original definition in [BiRe] we do not restrict to the integers
as coefficient ring, this will be crucial later on. Moreover, we have endowed
ER -(G, M) with a "singular point" : if ER -(G, M) 54 0 then M is of type FPm
over RG (see [BiRe]) which in turn is equivalent to 0 E ER-(G, M).

2.3 The homotopical invariants There seems to be no convincing defini-
tion of "type Fm" for monoids, in general, but if one restricts to monoids of
the form G. one can proceed as follows. Let X : G -4 R be a homomorphism,
and let k be the universal covering complex of a K(G,1)-complex of type Fm.
By a regular x-equivariant height function on k we shall mean a continuous
map h : K -> R such that

(i) h(gx) = x(g) + h(x) for all g E G and all x E K,
(ii) h(K°) C_ x(G), where K° is the set of vertices of K,

(iii) For each closed cell e of k, hie attains its minimum on the boundary of
e.

It is not difficult to see that such height functions always exist. More-
over, the cellular chain complex of the maximal subcomplex Kh contained
in h-1([0,00)) is a free ZGx-chain complex with finitely generated modules
in all dimensions < m + 1 [Mel, Me5].
We say that Gx is of type Fm if there is a K(G,1)-complex K of type F. and
a regular x-equivariant height function h : K -4 lR on the universal covering
complex such that K,, is (m - 1)-connected (resp. contractible if m = oo).
Finally we set

Em(G) = {x E Hom(G,R) I G, is of type Fm} ,

and denote by Em (G)e its complement in Hom(G, R). Clearly, 0 E Em (G) if
and only if G is of type Fm if and only if Em (G) # 0.

From the discussions above one can see that E°(G) = ER' (G, R) = Hom(G, ]R)
and that Em (G) C Em (G, Z) C Em (G, R) for all m > 1 and all R.

Theorem 2.4. [Re2] Let R be a commutative ring with non-trivial unity.
Then

(i) El (G) = El (G, R),
(ii) Em (G) = E2 (G) n Em (G, 7G) for all m > 2.

2.5 Some remarks on El(-)
(i) Monoids of type FP1 are not necessarily finitely generated (also see [Co]).

Let G = (a, t I t-lat = a2) and x : G 7G given by x(a) = 0 and
x(t) = 1. Then Gx is, in fact, of type FPS but not finitely generated.

(ii) Let I'(G, X) be the Cayley graph of G with respect to a finite generating
set X. Given X E Hom(G,R), let r(G, X)X be the full subgraph of
I'(G, X) with vertex set G, Then X E E1(G) if and only if P(G, X), is
connected [BiRe, BiSt4, Rel].
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(iii) The invariant E' (G) coincides up to sign with the Bieri-Neumann-Strebel
invariant EG' studied in [BiNeSt] (see [BiRe, Re2]).

(iv) K.S. Brown has given a powerful and elegant characterization of E' (G)
(resp. EG) in terms of R -tree actions [Br3] (also see [BiSt4, Gel, Ge2,
Le]). Applications are to be found in [BiSt4, Gel, Ge2, Ho, Me4].

In the introduction we already hinted at the following interesting properties
of our invariants. The proofs in the homological setting have been given only
for R = Z but they work perfectly for arbitrary non-trivial commutative rings
R with unity.

Theorem 2.6. [BiNeSt, BiRe, Re2] Let G be a finitely generated group,
N < G a normal subgroup containing the derived subgroup G', and M an
RG-module.

(i) M is of type FP,,, over RN if and only if {X E Hom(G, R) I x(N)=0} C
ER- (G, M).

(ii) N is of type Fm if and only if {x E Hom(G, R) I X(N) = 0} C Em(G).

Theorem 2.7. [BiNeSt, BiRe, Re2] ER (G, M) - {0} and Em(G) - {0} are
open subsets of Hom(G, R) - {0}.

There is no shortage of examples for ER (G, M) if G is abelian [BiStl, BiSt2]
and for E' (G) [BiNeSt, BiSt4, Br3]. The higher invariants Em (G) C E"° (G, Z)
have been computed for 1-relator groups [BiRe, Re2], fundamental groups of
compact 3-manifolds [BiSt4], or direct products of these [Gel, Ge2]. In [Me2]
we determined the higher invariants for direct products of virtually free groups
and, using Theorem 2.6, also the finiteness properties "FPm" and "F,,," of all
normal subgroups with abelian quotient.
In the following we often want to pass to sub- or supergroups of finite, index.
We will see later on that this can be harmful although we have:

Theorem 2.8. [BiNeSt, BiSt4, Sch] Let H < G be a subgroup of finite
index, and let x : G -* R be a homomorphism. Then X E ER -(G, M) (resp.
X E Em(G)) if and only if XIH E ER(H,M) (resp. XIH E Em(H)).

3. On E1(G) for soluble groups of finite Prefer rank
For a metabelian group G, given by an extension

(E) 1 -} A -3 G -+ Q -+ 1, A and Q abelian groups,

Bieri and Strebel introduced in their 1980 paper [BiStl] an invariant EA and
proved that it contains the full information whether G is finitely presented or
not (cf. Theorem 4.1 (ii)). By definition, EA = E° (Q, A), and the following
result shows that E'(-) can be thought of as a generalization of EA to the
class of all finitely generated groups.
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Theorem 3.1. [BiSt4] Let N be a normal subgroup of a finitely generated
group G, 7r : G -*GIN = Q the canonical projection, inducing the map
7r' : Hom(Q, R) > Hom(G, R), and A the abelianization N/N' viewed as a
ZQ-module via conjugation. If N is nilpotent and Q' finitely presentable then

E'(G)` = 7r* (E°(Q, A)°)

Remark. The inclusion ER' (Q, R ®z A)` C_ E°(Q, A)` can fail to be an equal-
ity. If Q = (q

I

-) is infinite cyclic and q acts by multiplication by 2 on
A = Z[2] then El (Q, K ®z A)` = 0 for any field K, but E°(Q, A)' # 0.

Although Theorem 3.1 tells us that, in the above setting, E' (G) and E° (Q, A)
are essentially the same invariants, we find it convenient to state the results
in terms of E' (G), if possible, avoiding the reference to a certain extension.
However, almost all the results below have been obtained for the invariant
E°(Q, A) (one exception is the first part of Theorem 4.1 which has a beautiful
proof using the Cayley graph approach to El(-) as explained in 2.5(ii); see
[BiSt4]). Indeed, there are very strong methods, using valuations on fields,
for "computing" E°(Q, A) (see [BiSt2, BiGr2]). We shall not be concerned
with the general case here but restrict ourselves to groups of finite Prufer
rank.

3.2 Finite Prufer rank A group has finite Prufer rank if there is a uni-
form bound on the minimal numbers of generators of all finitely generated
subgroups. Given an extension (E) with a finitely generated group G in the
middle, this group has finite Prufer rank if and only if the torsion subgroup T
of A is finite and A/T has finite torsion-free rank (see, e.g., [Bol]). By a result
of Mal'cev, finitely generated soluble-by-finite groups of finite Prufer rank are
nilpotent-by-abelian-by-finite (see, e.g., [Ro], Proof of Theorem 10.38).

Theorem 3.3. [BiSt2] Let G be a finitely generated soluble-by finite group
of finite Prufer rank. Then there exists a finite set S C_ Hom(G, Z) - {0} of
non-trivial homomorphisms such that E'(G)` = Jr x 0 < r E 1[t, X E S}.

In the remainder of this section we shall outline a procedure for "computing"
E'(-)e for soluble-by-finite groups of finite Prufer rank.

3.4 Computation of E1(G)` in the finite Prufer rank case Given a
finitely generated soluble-by-finite group G of finite Prufer rank, one proceeds
in two steps.
1) Reduction step. We first choose a subgroup H < G of finite index
containing a nilpotent normal subgroup N < H with Q = H/N free abelian.
By Theorem 2.8 it suffices to "compute" E'(H)°. Next, Theorem 3.1 asserts
that E' (H)` is completely determined by the invariant E° (Q, A)c of the finitely
generated 7GQ-module A = N/N'. Since the metabelian group H/N' is also
of finite Prufer rank, the torsion subgroup T of A is finite, hence E°(Q, A)` =
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E°(Q, A/T)`, and A/T has finite torsion-free rank.
We have now reduced the computation of E'(G)c to the computation of
E°(Q, M)`, where Q is a finitely generated free abelian group and M is a
finitely generated ZQ-module which is torsion-free as abelian group and has
finite torsion-free rank n = dimQ(M ®z Q. Then our second step can be
found in [Abg], 1.4.

2) The core. We first extend the action of Q on M to an action V)1 : Q -4
GL(M ®z Q). Let k be the finite field extension of Q obtained by adjoining
all eigenvalues of a finite generating set of 0 (Q). Let V be the k-vector space
M ®z k of dimension n, and extend 01 to a homomorphism 02 : Q -3 GL(V).
Then one trigonalizes the image of Q in GL(V) (see [Bor], Chap. I, (4.6)).
This gives us a homomorphism 7P : Q --* into the group of all upper
triangular matrices in Let pi : k8 be the projection onto
the (i, i)-coordinate, i = 1,. .. , n. In this way we obtain homomorphisms
Oi=pioz/i:Q-+k"for1<i<n.

Theorem 3.5. [Abg] With the notation above, E°(Q, M)° is the set of
all non-zero homomorphisms r (Q -* k' -+ 7L) E Hom(Q, R), where v
ranges over all normalized discrete valuations k8 -* Z, r over all positive real
numbers, and i over {1, . . . , n}.

Recall that a normalized discrete valuation is a group epimorphism v : k` -* 7L
with the additional property v(x + y) > min{v(x), v(y)} for all x, y E k8.
Since k is an algebraic number field, all valuations on k are "known" (see,
e.g., [Bou]). So the theorem above allows one to determine E°(Q, M)' and
hence E1(G)`.

3.6 Examples
(i) Let Q be a finitely generated abelian group that acts via a homomor-

phism is : Q -+ Q1 on the field of rational numbers, and let A be the
cyclic Q-module ZQ 1 C_ Q. If A G -4 Q is an arbitrary extension
then G is metabelian of finite Prufer rank, and E1(G)` is made up of all
non-trivial homomorphisms r (vp o i o ,7r) E Hom(G, R), where r > 0, p
is a prime number, and v, : Q* -w Z is the p-adic valuation.

(ii) Fix a natural number s. Then the group H = H8 consisting of all
upper triangular matrices (ai,;) E GL8+1(Z[2]) with ai,i > 0 for all i,
is of finite Prufer rank since it is constructible (see Section 4 below)
by [Ki]. If N denotes the nilpotent normal subgroup of all matrices
with ones on the diagonal then Q = H/N is free abelian on the s + 1
cosets q1 = diag(2,1, ... ,1) N, ..., q8+1 = diag(1,... ,1, 2) N. Using
the procedure above it is easy to compute E'(H)c: it consists of all
homomorphisms r (Xi o ir) E Hom(H, R), where r > 0, -7r denotes the
projection H -* Q, 1 < i < s, and the homomorphism xi : Q -) Z is
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given by

0

xi(q,) _ -1
1

ifiV{j-1,j}
if i = j - 1
ifi=j.

(iii) Abels' group r = V. = { (ai,;) E H I a,,, = as}1,8+1 = 11 is a normal
subgroup of H with abelian quotient. It is of finite Priifer rank, of type
F3_,, but not of type FP8 [AbBr, Br2]. By the recipe above, one finds
E' (I')° = {xir I X E E' (H)'}.

4. The FP.-Conjecture

As mentioned above, the starting point of the "E-theory" was the charac-
terization of the finitely presented metabelian groups in terms of the Bieri-
Strebel invariant EA. Using the invariant E' (G) along with the notation
-E'(G) = {-x I X E E'(G)} we state it as the second part of the following
theorem.

Theorem 4.1. Let R be a non-trivial commutative ring with unity.
(i) [BiNeSt, BiSt4] Let G be a group without free subgroups of rank 2. If G

is of type FP2 over R then E' (G) U -E' (G) = Hom(G,1l) .
(ii) [BiSt1] A metabelian group G is finitely presented if and only if it is of

type FP2 over R if and only if E' (G) U -E' (G) = Hom(G, R).

Let G be the quotient of Abels' group T3, the group of all upper triangular
matrices E GL4(Z[2]) with ai,i > 0 and a,,, = a4,4 = 1, modulo its
centre Z(V3). This nilpotent-by-abelian group of finite Priifer rank satisfies
E'(G) U -E'(G) = Hom(G, R), and it is of type FP2 over any field but not
of type FP2 [BiStl].

4.2 Tameness We say that E'(G)° (or ER' (G, M)`) is m-tame, where m E N,
if every subset of at most m homomorphisms is contained in a rationally de-
fined open half space of Hom(G,1l) . By some well-known separation theorem
this is equivalent to saying that 0 V conv(m E' (G)`, where the latter set is the
union of the convex hulls of all subsets of E' (G)` of at most m elements. Note
that the condition on E' (G)` in Theorem 4.1 is equivalent to the 2-tameness
condition.

Theorem 4.3. [BiGrl] Let G be a metabelian group given by an extension
(E). If G is of type FP,,, over a field K (m E N) then E' (Q, K ®z A)` is
m-tame.

The two preceding theorems have led to the following
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FP. -Conjecture. Let G be a metabelian group, and m E N. Then G is of
type FPm if and only if El (G)` is m-tame.

Notice that the case m = 1 is trivial and that Theorem 4.1 gives an affirma-
tive answer for m = 2. Moreover, Theorem 4.3 can be thought of as "one
implication over a field". Recently G.A. Noskov showed that if G, given by a
split extension (E) with torsion-free A, is of type FPm then E'(G)c is m-tame
[No]. And K.-U. Bux established the FP. -conjecture for semi-direct products
Os i Os, where Os is an S-arithmetic subring of a global function field [Bu].
In his proof he used Theorem 4.3 to deduce that E' (G)° is m-tame if, in the
extension (E), A is an elementary abelian p-group (p prime) and G is of type
FPm over F.
Thanks to the deep work of H. Abels and H. Aberg much more is known about
the finiteness properties of soluble-by-finite groups of finite Prufer rank.

Theorem 4.4. [Abg] Let R be a commutative ring with non-trivial unity,
andmEN.
(i) Suppose G is a soluble-by-finite group of finite Prufer rank. If G is of

type FPm over R then E' (G)° is m-tame.
(ii) A metabelian group G of finite Priifer rank is of type FPm over R if and

only if E' (G)` is m-tame.

We have seen that the 2-tameness condition is necessary but, in general, not
sufficient for a nilpotent-by-abelian group to be of type FP2. There is a
second (easy) necessary condition. Suppose N >-+ H -* Q is an extension with
an abelian group Q. If H is of type FP2 then the Schur multiplier H2(N, Z) of
N is a finitely generated ZQ-module [BiGrl]. Now, Abels proved that the two
necessary conditions are also sufficient for S-arithmetic nilpotent-by-abelian
groups (which are of finite Prufer rank!).

Theorem 4.5. [Ab] Let G be an S-arithmetic soluble group, and let H < G
be a subgroup of finite index containing a nilpotent normal subgroup N a H
with Q = H/N abelian. Then G is finitely presented if and only if G is of type
FP2 if and only if both E' (H)° is 2-tame and H2(N, Z) is finitely generated
as 7LQ-module.

Finally, we want to give a group theoretical characterization of the soluble-
by-finite groups of type FPS. Recall that a soluble-by-finite group G is
constructible (in the sense of [BaBi]) if it admits a finite chain 1 = Ho <
H, < . . . < Hk = G of subgroups such that either H. has finite index in H;+1
or H;+1 = (Hi, t I tHi t-' < Hz) is an ascending HNN-extension with base
group Hi. These groups are of finite Prufer rank and of type F.. Obviously
all polycyclic-by-finite groups are constructible but the class of constructible
soluble-by-finite groups is much bigger. Recently P.H. Kropholler proved:
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Theorem 4.6. [Kr] Every soluble-by-finite group of type FP. is con-
structible.

This result closes the remaining gap in the "FPS conjecture for nilpotent-by-
abelian groups" :

Theorem 4.7. Let G be a nilpotent-by-abelian group, and d the torsion-free
rank of its abelianization G/G'. Then the following assertions are equivalent:
(i) G is of type FPd+I.

(ii) G is of type FPS.
(iii) G is constructible.
(iv) El (G)` is contained in a rationally defined open half space of Hom(G,
(v) E' (G)° is (d+1)-tame.

Proof (i) implies (ii) is an observation in [Bi2], (ii) implies (iii) follows from
the preceeding theorem, the equivalence (iii) if and only if (iv) is discussed in
[BiSt3], and (v) implies (iv) is a general fact about convex subsets (see, e.g.,

[Va])

Now, let G be a nilpotent-by-abelian-by-finite group. If G is constructible,
it follows from Theorem 4.7 and Theorem 2.8 that E'(G)` is contained in a
rationally defined open half space of Hom(G,R). The converse is false: take
a non-constructible nilpotent-by-abelian group H and form the semi-direct
product G = (H x H) X Z2, where the cyclic group of order two permutes
the factors. Then G is not constructible but E' (G)` = 0.

5. The higher invariants for soluble groups of finite Priifer rank

In Section 4 we pointed out that for a metabelian group G, given by an
extension (E), the invariants E' (G) and E° (Q, A) are expected to carry the
whole information on the finiteness properties of G. Then there are two
obvious questions concerning the higher invariants:

(i) What can be said about E- (G) and E" (G, Z) for m > 2 ?
(ii) What can be said about E' (Q, A) for m > 1 ?

It turns out that only the first question is of interest. It is well-known that
the group ring ZQ of an abelian group Q is noetherian, so the second question
is answered by the following

Proposition 5.1. [Me3] Let G be a group, and M an RG-module. If the
group ring RG is left noetherian then E°n(G, M) = ER -(G, M).

Our first question seems to be much more difficult. It is conceivable that the
complements E- (G, Z) c g E-(G)` of the higher invariants are also completely
determined by E' (G)`, though not in the very strong sense of the preceeding
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proposition. Recall that conv<m E' (G)` = Uo conv(o), where the union is
taken over all a C E'(G)° with Jul < m.

Em-Conjecture. Let G be a metabelian group, and m E N. If G is of type
F P m then conv<m E' (G)c = E"'(G, Z)c = E- (G)c.

Although this conjecture is connected somehow with the FP,,,-conjecture (see
[Me5]), none of them seems to imply the other. R. Gehrke proved that
conv<2 E'(G)` C_ E2(G,Z)c holds for all finitely presented metabelian groups
[Gel, Ge2].
Using Aberg's above result and, in particular, the CW-complex constructed
by him in his proof of the "if"-part of Theorem 4.4(ii), the author established
the E"'-conjecture for metabelian groups of finite Prufer rank ([Me5, Me6],
which are revised versions of [Mel]). Although we only considered the integers
as coefficient ring, the arguments in [Me5] work for any R.

Theorem 5.2. [Me5, Me6] Let G be a metabelian group of finite Prufer
rank, and R a non-trivial commutative ring with unity. If G is of type FPm
then

conv E' (G)` = ER -(G, R)` = Em (G, Z)° = Em (G)`
<m

Using this result together with work of Aberg and Strebel we are going to
prove:

Theorem 5.3. Let G be a soluble-by-finite group of finite Prufer rank, and
let K be a field. If G is of type FPm over K, then

convE'(G)` C EK(G,K)" C E"'(G,Z)' C E- (G)`
<m

Proof We only have to prove the first inclusion, and by Theorem 2.8 we can
pass to the situation where G is nilpotent-by-abelian (and of finite Prufer
rank).
Let us assume for a moment that p : G -* G is an epimorphism with abelian
kernel A < G". It follows easily from Theorem 3.1 that E'(G)° = p*(E'(G)°)
where p* Hom(G, R) Hom(G,1R) is the induced linear map. Now, Aberg
has shown that the homology groups Hi (A, K) are finite dimensional K-vector
spaces for all i E No ([Abg], IV.2, Proof of Proposition 2.1). By Theorem B
in [St] one concludes that G is of type FPm over K. Moreover, from Strebel's
proof one can also infer that p*(EK(G, K)c) C_ EK(G, K)°. Summarizing
we find: if conv<m E'(G)" C_ EK(G, K)` holds then we have the inclusion
conv<m E' (G)" C EK (G, K)`.
Finally, we consider the epimorphism G -*GIG" = G. Since G" is soluble
we may as well assume that it is abelian. Then the discussion above shows
that d is of type FPm over K which implies conv<m E'(G)° = EK(G, K)` by
Theorem 5.2. Hence we obtain the desired inclusion by the argument above.
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Question. Let G be a nilpotent-by-abelian group of finite Priifer rank. If G
is of type Fm is it true that E' (G)' is contained in the convex hull convE'(G)`
of E' (G)` ?

We know that the answer is "yes" if G is constructible.

Theorem 5.5. [Me5, Me6] Let G be a constructible nilpotent-by-abelian
group. For any commutative ring R with non-trivial unity and any m E N
we have

convE'(G)` C ER(G,R)' C Em(G,Z)° C Em(G)c g convE'(G)` ,

and ER(G,R)` = Em(G,Z)c = E- (G), = convE'(G)° for all m > d, where d
is the torsion-free rank of GIG'.

Conjecture 5.6. If G is a constructible nilpotent-by-abelian group and
m E N then conv<m E' (G)` = Em(G)c.

It would be of interest to prove this conjecture. In conjunction with Theo-
rem 2.6 it would yield results on finiteness properties of certain nilpotent-by-
abelian groups of finite Priifer rank, for example, a new proof that the group
IF. of Example 3.6(iii) is of type F8_,.
Theorem 5.5 does not hold for soluble constructible groups: let H = (a, t
t-'at = a2) and G = (H x H) x 7L2i where the cyclic group of order 2 acts
by permuting the factors. Then G is constructible and E' (G)° = 0, but
ER (G, R)` = ER (G, R)° = E- (G)` = r2
Although we cannot completely determine the invariants of constructible
soluble-by-finite groups, we can characterize the groups where the comple-
ments of the invariants are empty:

Theorem 5.7. [Me3] A soluble-by-finite group G is polycyclic-by-finite if
and only if E- (G)` = 0 if and only if E- (G, Z)c = 0.

Note added in proof

In 1995 M. Bestvina and N. Brady [Morse theory and finiteness properties of
groups, to appear in Invent. Math.] proved that there exist groups of type
FP. which are not finitely presented. Their examples also imply that the
invariants Em(G, R) and Em(G) can differ for all m > 2 (and any non-zero
ring R). However, it is still unknown whether such examples can occur within
the class of soluble groups.
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Some Constructions Relating to Hyperbolic Groups

K.V. Mikhajlovskii and A.Yu. OI'shanskii

Abstract. The purpose of this paper is to construct certain quotients, HNN-
extensions, amalgamated products and inductive limits of hyperbolic groups,
and to apply the results to construct finitely generated verbally complete and
divisible groups.

0. Introduction

The first examples of infinite non-abelian groups, all of whose proper sub-
groups are cyclic [9], were constructed as inductive limits of hyperbolic groups,
although the notion of hyperbolicity was not exploited explicitly. An explicit
application of hyperbolic properties for such constructions was proposed in
[1] by M.Gromov. This approach was realized in [2].
In the present paper we focus on a method for constructing divisible and
verbally complete groups by means of hyperbolic group theory. Recall that
a group G is said to be divisible if for any element g of G and any nonzero
integer n the equation x" = g has a solution in G.
The groups Q and CD_ are natural examples of divisible groups. For a long
period of time, it was unknown whether or not there exist non-trivial finitely
generated divisible groups. The first examples were constructed by V.S.Guba
[10]. These groups are torsion free. Later on, periodic examples have been
given by S.V.Ivanov [7]. Until now it was unknown whether or not there exist
non-trivial finitely generated verbally complete groups. Recall that a group G
is verbally complete if for any non-trivial word v(xl, . . . , x,) of the free group
F(xl, x2, ...) with countable set of generators, and for any element g E G,
the equation v(xl, ... , xn) = g has a solution in G. We have obtained the
following results.

Partly supported by Russian Fund of Fundamental Research Grant 010-15-41. The second
author was also supported by ISF Grant MID 000.
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Theorem 1. For every non-cyclic torsion free hyperbolic group G there exists
a non-trivial torsion free verbally complete quotient H of G.

Theorem 2. Every non-elementary hyperbolic group G has a non-trivial
verbally complete torsion quotient group G.

Corollary 1. There exist non-trivial finitely generated torsion free verbally
complete groups.

Corollary 2. There exist non-trivial finitely generated verbally complete
torsion groups.

Corollary 3. For every non-cyclic torsion free hyperbolic group G there
exists a non-abelian torsion free divisible quotient H of G.

Corollary 4. Every non-elementary hyperbolic group G has a non-trivial
divisible torsion quotient group G.

Corollary 5 (Guba). There exists a non-trivial finitely generated torsion
free divisible group.

Corollary 6 (Ivanov). There exists a non-trivial finitely generated divisible
torsion group.

Our proof of Theorems 1,2 uses results of [2] and criteria for hyperbolicity of
HNN-extensions and free products with amalgamated subgroups, which are
given below. For their formulation, recall that in M.Gromov's terminology
an elementary group is any cyclic-by-finite group. It is known [1,3] that every
non-elementary subgroup of a hyperbolic group G contains a 2-generated free
subgroup, and every element g of infinite order in G belongs to a unique
maximal elementary subgroup E(g) C G.

Theorem 3. Let G be a hyperbolic group with isomorphic infinite elementary
subgroups A and B, and let 0 be an isomorphism from A to B . The HNN-
extension G = (G, t I t-'at = *(a) , a E A) of G with associated subgroups A
and B is hyperbolic if and only if the following two conditions hold:
1) either A or B is a maximal elementary subgroup of G;
2) for all g E G the subgroup gAg-1 fl B is finite.

Corollary 7. Let G and H be hyperbolic groups, A and B be infinite ele-
mentary subgroups of G, H respectively. Then the free product of the groups
G and H with amalgamated subgroups A and B is hyperbolic if and only if ei-
ther A is a maximal elementary subgroup of G or B is a maximal elementary
subgroup of H.

In the case when the elementary subgroups A and B in Theorem 3 and Corol-
lary 7 are abelian, these criteria were obtained simultaneously and indepen-



Some constructions relating to hyperbolic groups 265

dently by O.Kharlampovich and A.Myasnikov [5].The authors are grateful to
professors O.Kharlampovich and A.Myasnikov for communicating their re-
sults. Notice also, that Corollary 7 was earlier proved by different methods
in the work of M.Bestvina and M.Feighn [4], and in the case of maximal
cyclic subgroups A and B, the hyperbolic property of free constructions was
established by M.Gromov [1] (without details). The above results were par-
tially included in the Abstracts of the Durham symposium on geometrical
and cohomological methods in group theory (July 1994).

1. General notions and definitions

There are several equivalent definitions of a hyperbolic group [1,3]. We will
use the following one. Let

G=(91,...,9kIrl,...,n) (1)

be a finitely presented group. Every word W, which is equal to 1 in G, can
be expressed in the free group F(gl,... , gk) as

n

W = flu;r'u;' (2)
:=1

where the number n = n(W) can be assumed the minimal possible one. The
group G is said to be hyperbolic (word hyperbolic or negatively curved), if
there exists a linear function bounding the number of factors n = n(W) in
(2) depending on the length IIWII of the word W. In other words, there is
a constant 3 = f(G) such that n(W) < fII W II for every word W represent-
ing the identity in G. The definition does not depend on the choice of the
presentation (1) of G.
To prove the theorems, we will use the geometric language of diagrams over
groups [6].
Recall that a map is a finite planar connected and simply-connected 2-
complex. A diagram A over an alphabet A is a map whose edges e are
labeled by letters O(e) E A}' such that O(e)-' = O(e-'). A diagram over
A is called a diagram over the group G given by the presentation (1), where
A = {g1, 92, ... , gk}, if the label of the boundary path of every face of A is a
cyclic permutation of some relator. In view of van Kampen's lemma [6,7], to
prove that a group G, given by the presentation (1), is hyperbolic, it suffices
to find a constant C = C(G) > 0 such that n(0) < CIIaLII for every minimal
circular diagram A over G, where n(0) is the number of faces in A and IIaoII
coincides with the perimeter of OA.
We first prove the sufficiency of the conditions of Theorem 3. For definiteness
we will assume the subgroup A to be maximal elementary in G. Let the group
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G and its subgroups A and B from Theorem 3 be given by

G =

A = (a) U x1 (a) U ... U xn(a)

B = (b) U yl(b) U ... U yn(b)

(3)

(4)

(5)

where the elements a, b, xi, yi i = 1, . . . , n are chosen in accordance with the
given isomorphism V), i.e., : a H b, O : xi H yi i = 1, ... , n and (a), (b)
are infinite cyclic subgroups of finite index in A, B respectively. We may
assume (a), (b) to be normal subgroups of A and B. Then the group G has
the presentation

(gj,...,gv,tIrl,...,rr,t-'atb-l,t-lxltyi ,...,t-'xntynl) (6).

Define further our alphabet as a set A, where

A = {g,..,g,,a,b,x,,...,xn,y1,...,yn,t}}1

For elements of the groups G and G, we introduce the following length
functions 11 11 and 11. If W is a word in the alphabet A, then 11W11 is
the length of W. Another length I W I is the minimal length among all
words representing the same element of the group G * (t)om as the word W
(we consider words in the alphabet A to be elements of G * (t),,), that is
I W I = min{ II V II I V = W, V E G * (t)om}. By the above definition, we have
that IIail = IIbII = 1 and IIxiII = IIyiII = 1 for i = 1,. .. , n. The notation
X - Y will be used for graphic equality of the words X and Y.
Consider a path p = el ... e,,, in a diagram A over G or over G. We will
use the notation p_, p+ for the initial and the terminal vertices of a path p,
respectively. The length IIpUI of p is, by definition, the number of edges in
its presentation and the length IpI of p is the length I0(p) I of its label as an
element of the group G * (t)00, which was defined above.
Further we assume the notions of the Cayley graph C(G) of the group G and
hyperbolic space to be known [1,3]. Let us endow each edge e of C(G) with
the metric of the unit segment [0,1] and define a geodesic metric on C(G) by
extending the metrics of all edges. (Recall [1,3], that a group G is hyperbolic
if and only if its Cayley graph C(G) is a hyperbolic space.)
Consider a path p in C(G) with the natural parametrization by length. The
path p is called (A, c)-quasigeodesic for some A > 0 and c > 0, if for any points
p(s) and p(u)

Ip(s) - p(u) I >- Als - uI - c.
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A word W in the alphabet A is called (A, c)-quasigeodesic, if W is the label
of a (A, c)-quasigeodesic path in the Cayley graph of the group G * (t)"..
Fixing a vertex o of a circular diagram A over the group G, one can define
a natural mapping -y of A into C(G). Let y(o) = O, be the unity vertex of
C(G). For an arbitrary vertex 0 the image y(O) is, by definition, the element
of G represented by the word 0(p), where p_ = o and p+ = 0 for a path p
in A. In view of van Kampen's lemma, 0(p) q(q) in G if p_ = q_ and
p+ = q+ since A is a simply-connected diagram. Then for an edge e in A the
image e = -y(e) is by definition the edge with the starting point 7(e-) and
with the same label as e. Clearly, the mapping -y can be extended onto the
set of paths in A. Obviously, the mapping y preserves the lengths jpj and
I1p1l of any path p in A.
Call a path p in a diagram (A, c)-quasigeodesic if its y-image in C(G) is (A, c)-
quasigeodesic. The following lemmas will be useful. Consider a hyperbolic
group G, its Cayley graph C(G) and denote the distance between two points
x, y E C(G) by p(x, y).

Lemma 1 ([1;3, p.90]). There exists a constant H = H(G, A, c) such that
for any (A, c)-quasigeodesic path p in C(G) and any geodesic path q with the
conditions p_ = q_ and p+ = q+, the inequalities p(u, p) < H and p(v, q) < H
hold for any points u E q and v E p.

Call two paths p and q in C(G) K-bound for some K > 0 if

max(p(p-, q-), p(p+, q+)) < K.

A geodesic n-gon [x,, X2.... , in C(G) is a closed broken line x, - x2 -
... - x - x, where each path xi - x; is a geodesic segment [x1, x;] .

Lemma 2 ([8, Lemma 25]). There are positive constants c, = c, (G) and
c2 = c2(G) such that for any geodesic n-gon P in the C(G) the following
property holds. If the set of all segments of P is divided into three subsets N,,
N2, N3 with the length sums a,, a2, Us, respectively and Q, > cn, a3 < 10-3cn
for some c > c2, then there exist distinct segments p, E N, and A E N, U N2
having c,-bound subsegments of length greater than 10-3c.

2. Planar diagrams over HNN-extensions

For circular diagrams over the group G or over G, given by presentations (3)
and (6), we will partition the edges into two systems:
1) g-edges with labels in the group G;
2) t-edges with labels t}l.
When considering diagrams over G, it will sometimes be convenient to admit
faces with boundary labels from the set of all relators (not only defining) of
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the group G. A face of a diagram A is called a g-face if its boundary label
belongs to the set of all relators of the group G. A face with boundary label
from the set {t-'atb-', t-'xityi ' i = 1, ... , n} is called a t-face.
Now we introduce elementary transformations for circular diagrams over G
or G.
1. Assume a vertex o has degree 1 in a diagram A, i.e., o = e_ for a single
edge e. Then one may delete e except for the vertex e+.
2. Let o, = f+ = (fl)_, o2 = (f,) + = (f2) _ for some edges f, fl, f2i where
o, and 02 are vertices of degree 2 in A and ¢(f,) = ¢(f2)-'. Then one can
delete 01, 02 from the set of vertices by declaring f f, f2 to be a single edge e
with the label ¢(e) = 0(f).
3. If two different g-faces II, and 112 have a common edge e in their boundaries
then one may delete it (except for e_ and e_F) making 11, and 112 into a single
g-face H.
Let 1', 2', 3' be the inverses of the elementary transformations 1, 2, 3 respec-
tively (where 3' is permitted only when the new faces n, and f12 arising from
fl correspond to relators of G).

Definition. Let A be a diagram over the group G given by presentation
(6). A sequence of t-faces 7r,, . . . ,1rin A is called a t-strip if for any i =
1, ... m - 1 the t-faces *7ri and Sri+, have a, common t-edge (Fig.1).

T

n,

T T T

Figure 1.

A t-strip 11 is called cyclic if it consists of m > 1 t-faces ir,, ... , 7rm such that
ir, and 7r,,, have a common t-edge (Fig.2).

Figure 2.
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Consider a circular diagram A over the group G which has T t-faces. Then
the r is called the type r(A) of A. All diagrams over G will be ordered by
their types.

Definition. A circular diagram A over the group G with boundary label W
is said to be minimal if for any circular diagram A' over G with the same
boundary label the following inequality 7-(0) < T(A') holds.

Lemma 3. A minimal circular diagram A over G has no cyclic t-strips.

Proof Assume that a minimal diagram A over G has a cyclic t-strip II and
denote the inner and outer contours of II by p and q (Fig.2). Let us consider
the circular subdiagram A' of A with 9A' = q. The boundary label of A'
is, by definition, an element from A or B (in Fig.2 O(q) E A) and since A'
is a circular diagram over G, we obtain O(q) = 1 in G. Recall that by the
definition of HNN-extensions (see [6]), the groups A, B are embedded into
G by the natural maps a H a, b H b for a E A, b E B. Therefore we will
have that q(q) = 1 either in the group A or in B. So one can cut out A' from
A and paste in its place a diagram with the same boundary label consisting
of g-faces only, thus reducing the number of t-faces in the resulting diagram.
But this contradicts the minimality of A. Hence our assumption is false and
the lemma is proved.

A system of t-strips in a diagram A over G is called a distinguished system if:
1) different t-strips have no common t-edges (that is they are disjoint);
2) any t-face of A belongs to some t-strip.
A circular diagram A over G is said to be simple if a0 is a cyclically reduced
path and A # Al U A2i where A,, A2 are circular subdiagrams of A with
non-empty sets of edges such that A, n A2 consists of a vertex.
Since cyclic t-strips are not contained in minimal diagrams, the boundary
t-edges of any distinguished t-strip in such diagrams belong to M. There-
fore a minimal simple diagram A over G can be presented as the union of
subdiagrams

A=U44tu Ha
where the zt are maximal circular subdiagrams over G and the II; are dis-
tinguished t-strips in A (Fig.3).

Figure 3.
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When considering diagrams over G, we will always assume them to be:
1) circular; 2) simple; 3) with a fixed distinguished system of t-strips.

3. Choice of constants

Our proofs and some definitions will be based on a fixed system of constants.
It is convenient to introduce all of them and to indicate in which order they
will be chosen. All of the constants, that will be used below, will be chosen
sequentially, one after another. Each of the following constants is chosen after
its predecessor

0, A, c, H, c1, E, 01, M, p, 0, a1, a. (7)

Each of them is positive and depends on the group G only (not on a fixed
diagram over G or G).
The first constant is 0 which determines the linear isoperimetric inequality
for the hyperbolic group G. Then we choose A > 0 and c > 0 using Lemma
2.4 [2] such that any word from the set

{xzamxj, yibmy; I i, j = 1, ... , n, m E Z}

is (A, c)-quasigeodesic.
The next constant is H = H(G, A, c) > 0 which we select using Lemma 1. The
constant cl = cl (G) is chosen in accordance with Lemma 2. The remaining
parameters will be introduced below.

4. Contiguity subdiagrams

Let II1 and II2 be distinct t-strips in a diagram A over G. Consider a sim-
ple closed path w = p1g1p2g2 in A such that q1 and q2 are subpaths of the
boundary cycles of III and II2 with the properties: 1) Ilpl1I,1Ip2II < e (see (7));
2) ¢(p1), ¢(p2) consist of g-edges only; 3) a subdiagram IF of A, bounded by
w, has no t-faces; 4) min(llg111, 11g211) > 1.

Then we call r a contiquity subdiagram between IIl and II2. We will also
consider a contiquity subdiagram r of some t-strip III to a section q of aA,
if q2 is a subpath of q.
The notation a(II1, r, II2) (or a(II1, r, q))= p1g1p2g2 will define the above par-
tition of the contour w of r. The subpaths q1 and q2 are called the contiguity
arcs while p1, p2 are called the side arcs of I'.
We choose the constant e with the property E > 2H + c1, where H and cl are
introduced above.
A system M of contiguity subdiagrams of t-strips to t-strips or to a contour
aA in a diagram A over G is called a distinguished system if:
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1) distinct subdiagrams in M have no common faces and no common edges
in their contiguity arcs (i.e., these subdiagrams are disjoint);
2) the sum of lengths IIpMI of all contiguity arcs p of all subdiagrams of M is
not less than the similar sum for any other system M' with the property 1);
3) the number of subdiagrams in M is minimal among all systems with the
properties 1) and 2).
If r is a distinguished contiguity subdiagram of a t-strip H to the contour aA
and a(II, r, aA) = p1g1p2g2, then the arc q1 of II ( and all of its edges) is said
to be outer. If a(ll, r, III) = p1g1p2g2 for a t-strip II1 then q1 is an inner arc.
The other edges of all, that are neither outer no inner, are called unbound.
Every maximal subpath of the boundary of II consisting of unbound edges
will be called an unbound arc of t-strip H. An unbound arc of aA can be
defined similary.

In order to prove hyperbolicity of the group G, i.e., for obtaining a linear
isoperimetric inequality for the minimal circular diagrams over G, we can
restrict ourselves to considering only such diagrams over G, which consist of
g-faces and the following special t-strips. A t-strip II in a minimal diagram
A over G is said to be special if ¢(8II) - t-lxiakxjtyy 1b-kyi 1 (Fig.4), where
0 (xi) = yi,V' (x;) = y ; are defined above, k E Z and i, j = 0,1, ... , n. In the
above definition the case k = 0 is just the case, when t-faces with boundary
label t-latb-1 do not occur in 11, and similarly, if i = 0 then a t-face with
boundary label t-'xityi 1 does not occur in II.

yi

t

xi

t

bk

t

yj

t

xi

Figure 4.

In particular, let us recall that we assume the subgroups (a) and (b) to be
normal in the groups A and B respectively (see Section 1), that is for any
i = 1,... , n we have xiax= 1 = aft, yiby. 1 = b}1 in G. This means that if
we have a t-strip II in a diagram A over G, which is not special, then using
the elementary transformations of A one can obtain a t-strip II' from a t-
strip II with arI' -- t 1x x a tb- 1 ... 1

sl ' tk yik yil , where xi, E x1 i ... )xn l

yti E {y1, ... , yn}. Then by the decompositions (4) and (5) of the groups
A, B we have xi1 ... xik = xioam, yi, ... yik = yi,,bm, where V)(xi0) = yi0 and
xi, E {x1,...,xn}, yi0 E {y1,...,yn}.
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Thus, by elementary transformations of A one can obtain a t-strip 11" from
IF which will be special. Hence, starting from a minimal diagram A, we
obtain a diagram A' with the same boundary label consisting of g-faces and
t-strips of special type. In the general case, the number of t-faces in A' may
increase. Therefore, if we prove a linear isoperimetric inequality for such
minimal special (i.e., with special t-strips) diagrams, then the hyperbolicity
of G will be established. Hence, from now on we will consider minimal special
diagrams only (i.e. diagrams having minimal type among all special diagrams
with the same boundary label).
To prove Theorem 3, we shall exploit the notion of estimating graphs 4) and
V (see also [7,8]). Namely, choose a point o = o(1I) inside each t-strip TI of
a diagram A over G and define the set of all o(lI) to be the set of vertices of
the graph <D. Let r be a distinguished contiguity subdiagram of a t-strip Ill
to a t-strip 12i then the vertices o, = o1(H1) and 02 = 02(lI2) are connected
in ' by a non-oriented edge of fi through the subdiagram r.
In our considerations, a contour of a minimal diagram A over G will be
regarded as a single section whose maximal subpaths consisting of g-edges
are (A, c)-quasigeodesic. To define the graph V, choose a vertex 0 outside
of A and regard the set of vertices of F' consisting of the vertex 0 and the
vertices of the graph D. For each contiguity subdiagram r of a t-strip lI to
a contour OA the vertex o(II) is connected with 0 in 1' by an edge of J'
passing through r.

Lemma 4. Let A be a minimal diagram over G, then the estimating graphs
J and V satisfy the following condition: there is a vertex of inside every
2-gon of V.

Proof The statement follows immediately from the definition of distinguished
(maximal) contiguity subdiagrams and the fact that the boundary t-edges of
any distinguished t-strip in the minimal diagram A lie on 80.

5. Compatibility of paths and reduction of type

If g is an element of infinite order of a hyperbolic group G, then by E(g) we
will denote the unique maximal elementary subgroup of G containing g (the
elementarizer of g) [2].
Considering the circular diagrams over G, we will partition the t-strips into
two sets. A t-strip H will be called long if 1Ie111I > p, where p depends on the
group G only and will be chosen below. Otherwise lI will be called short.
Consider two paths u1, u2 in the Cayley graph C(G) of the group G and
suppose 0(u1) = Wi 1, cb(u2) = W212' where W, and W2 have infinite order in
G. The vertices o,, 02.... of the path u1 such that labels of subpaths of - of+1
are equal to WI in G, will be called the phase vertices of u1. Similarly, choose
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phase vertices 51 i 52, ... on u2. We call the paths ul and u2 compatible (see
[2]), if there is a path v in C(G) joining some phase vertices of and o; of paths
u1, u2 such that VW2V-' E E(W,) in G for the label V = O(v) and there are
nonzero m, l such that (VW2V-,)m = W,' in G.
For a t-strip 11 in a diagram A over G, we define the A-section and the B-
section of the contour 811 as the maximal subpaths of the boundary with
labels in A and in B respectively.
Let us consider a circular diagram A over G and a contiguity subdiagram r
between A-sections of long t-strips H, and 112 in A. We put 0(11,, F,112) _
piq,p,g2, where Iip ll, Iip211 <_ e,

O(011,)

0(0112) =t-'x;a`x,2it(yjl)-lb-`(ys)-'

where xi, x;, x3, xJ E {x1) ... , xn}, y21,y2,yj1,yj2E y,,...,yn
For simplicity, we assume the initial and terminal vertices of paths pl, p2
to be phased with period a (Fig.5). We recall that the subgroup A of G is
supposed to be maximal elementary, that is A = E(a) in G.

I

b

Figure 5.

Let O(q,) - akl, O(Q2) - as', Ik,I <_ IkI, 11,1 < 111. By the definition of a
contiguity subdiagram, r is a circular diagram over G. Consider the -y-image
of IF in C(G) defined in Section 1. Then by Lemma 2.5 [2] there exists a
constant M = M(a, b, e) > 0 such that either Ik, l, 11,1 < M or the paths q,
and q2 are compatible.
Let us show how to reduce the number of t-faces in A in the second case, i.e.
when the diagram A is not minimal.
The compatibility of the paths q, and q2 yields that there exists a path p in r
joining some vertices o, and 02 on q,, Q2i respectively, such that 0(p)aO(p)-' E

E(a). Therefore, by Lemma 1.16 [2] we obtain O(p) E E(a) and as A = E(a),
finally 0(p) E A. Then from r one can obtain ¢(p,), 0(p2) E A as ¢(p) E A.
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As we regard the case when inequalities Ik1I, I11I < M are not satisfied, we
assume 11, 1 > M. Then using the (), c)-quasigeodesity of the paths q1 and
q, and the equality O(ql) = 0(p1)-1O(g2)-'O(p2)-1 in G, we obtain from I'
Ik1I IIaII = IIg1II >_ Ig1I = Ip lqz 1p; 1I >_ Ig2I - 2s > c- 2E = )Il1I IIaII -
c - 2e. Since a E A, one obtains

I k, I > AM - c - 2E = M. (8)

Let us define the substrips ir1 and 7r2 of H and 112i respectively, with contours
g2e'2g2, where e1, e2, ei, e2 are t-edges, '(q',) = b",air1 = e1g1e2gi, 0ir2 = e'1

O(g2') = b-" (Fig.6).

Figure 6.

Then we cut out a subdiagram r with contour

al, = ple1 l(qi)-lea
lp2(ei)-1(42)-1(e2)-1

from A (Fig.7). r consists of the union of the t-strips 7r1i ir2 and the subdia-
gram r.

- Pi
r

Figure 7.

As mentioned above, O(p1),O(p2) E A, so by the decomposition (4) of A,
¢(pl) = xlak0, q(p2) = x2a'O, where xl,x2 E {x1, ... )In}- Since the words
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x1ak0,xza10 are (A, c)-quasigeodesic, we obtain

Ilpill ? jpu = Ix1ak0l )IIxlak0II - c > Ikol)tIIaII - c.

Then, using the inequality IIp,II e and the fact that hail = 1 (recall that
a E A), we obtain

1k01 (E + c))-1.

Similarly,

(9)

hlol C (e + c) A-'. (10)

Now let us consider our circular diagram r separately (Fig.7).and carry out a
series of transformations with it. Eventually, we will obtain a new diagram r'
with the same boundary label, but with a smaller number of t-faces than in
r. Finally, we will paste r' in A instead of I', reducing the number of t-faces
in A.
As 0(pi) = xiak0, qS(pz) = xza'o in G, we can glue to paths pi, P2 of I'
diagrams 0142 over G with contours 801 = p1vi 1,802 = pzvz 1, where
0(vi) = xlak0,O(vz) = t2a`0. We construct a diagram over G with the
contour

er' =
vlel'(41)-'e21v2(e1)-1(42)-'(e2)-''

Then one can glue to paths (e2)-'vle-', e21vz(ei)-' t-strips 7ri, ir2 with//''bound-

ary labels (p(a7r) = t-'xlakotb-k0 `(xl)-1, 0(8i ) = t-':t2 '(x2
where V) : A -+ B is our isomorphism.
We obtain a circular diagram r" over G with a boundary label from the
group B where 8I " = v1(g)vz(4')_1 and q5(v1) = 0(xl)bko,O(v2) _ 0(xz)b`0
(Fig.8).

Figure 8.
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Since E B and the group B is embedded in G by the natural map
b -+ b, b E B [6], one can replace I' by a circular diagram with the same
boundary label consisting of g-faces only. Thus we can consider I' to consist
of g-faces only.
In order to construct the diagram r' replacing r, we have to carry out inverse
transformations. Namely, glue to paths v,, v2 the mirror copies of the t-
strips ir,' and 7r2. Then glue to v, and v2 copies of the diagrams Al and 02.
Eventually, one can obtain a diagram r' with the same boundary label as r.
Then we paste r' in A instead of r and get a new diagram A' with the same
boundary label as A. We prove below that r(A') < r(A), i.e. the diagram
A is not minimal.
Notice, that after our transformations the t-strips 141i II2 are replaced by t-
strips IIi and 11' , where IIi consists of the union of 7r1 i 7ri,1r2 and II2 consists
of the union of i1, ir2, 7r2i where iI, *, are substrips of II1 such that III =
fr, U 71 U *, and, similarly 142 = 7r2 U ire U
In the general case, II; and II', are not the special t-strips, as there are g-
edges with labels Jr, and x2 in substrips iri, ir2. But since the subgroups
(a), (b) are normal in the groups A and B, then after a series of elementary
transformations over A' we can assume that the initial pair of edges in the
contours 8H' and al4'2 have the labels x, (x,)-1, respectively. Finally,
as above, these products belong to A. Therefore we obtain x; (x1)-1 = x'a"1
and (x3)-1-t2 = x"a"2, where x', x" E {x1, ... , Thus, after elementary
transformations over A' one can regard the t-strips IIi and II2 to be special.
Recall that the elements X1, ... , x belong to the alphabet A. Therefore we
have 2 and using the (A,c)-quasigeodesity of the
words x'a"1, x"a"2 we obtain

roll, In2I C (2+c).-1 (11)

So, the total number of t-faces in t-strips IIi and l12 is equal to n = Ikol +
1101 + (nil + In21 + I k - k1I + Il - l,1 + 4. Therefore, using the inequalities
(9),(10),(11) one obtains

n < 2(e+c))1'1+2(2+c)X 1+Ik-kil+I1-11I+4

Moreover, the total number of t-faces in the t-strips II1 and II2 is equal to
fn = IkI + III +4, but as was mentioned above 11,1 > M and (k1l > M by (8).
In other words, 11, 1 and Ik1I are sufficiently large and so the inequality n < m
holds. This means that the number of t-faces in the t-strips 11', and II2 is less
than that in 11, and 112. Thus, we have shown that the diagram A was not
minimal in the case of compatibility of paths q1 and q2.



Some constructions relating to hyperbolic groups 277

6. Outer arcs of long t-strips

Let a group G be given by the presentation (6). We prove in this section that
the sum of the lengths of all outer arcs of long t-strips in a minimal special
diagram A over G is almost equal to the sum of the perimeters of all t-strips
in A.
Consider a minimal diagram A over G and construct the estimating graphs 1
and V for it (as in Section 4). We will use the notations V((D) and E(4)') for
the number of vertices of 1 and for the number of edges of V, respectively.
Taking into account Lemma 4, it is easy to restrict the number E(-I)') in terms
of V(fl. For example, Lemmas 10.3,10.4 [7] give the following (rather rough)
estimate:

Lemma 5. For any minimal diagram A over G the inequality E(4') <
10V (f) holds.

Extracting all t-strips and all distinguished contiguity subdiagrams from A,
one can obtain a set of diagrams A , ,- .. , At over G. As mentioned in Sec-
tion 2, the boundary t-edges of any distinguished t-strip in a minimal special
diagram A lie on aA. Therefore the diagrams Al i ... , Di are circular. Let
every boundary aDi consists of ni arcs, where each arc is either (1) an un-
bound arc of a t-strip, or (2) an unbound arc of ao, or (3) a side arc of some
distinguished contiguity subdiagram in A.

Lemma 6. E1=1 ni < 50m for any minimal diagram A over G, where m is
the number of t-strips in A (m > 1).

Proof If the contour of a t-strip H (or of &) consists of i contiguity arcs
and j unbound arcs, then j < i + 1 since unbound arcs have to be separated
by contiguity arcs. So the total number of unbound arcs in A is not greater
than r + m + 1, where r is the number of distinguished contiguity arcs in
A (recall that we regard ao as a single section). On the other hand, r is
not greater than twice the number of edges of the estimating graph V for A.
Hence, by Lemma 5 we have r < 20m. Similarly, the number of arcs of type
(3) is not greater than 20m. Therefore the total number of all arcs satisfies
the inequality Ei_1 ni < (20m + m + 1) + 20m < 50m.

Now we consider a minimal special diagram A over G, all of whose t-strips are
long, that is 11aHll > p for any t-strip II in A. Recall (see Section 4), that the
constant E bounds the length of the side arcs of contiguity subdiagrams and
satisfies the inequality e > 2H+c1 (see Section 3). Recall also that every word
of the set {xiamx;, yibmy; I i, j = 1, ... , n, m E Z} is (A, c)-quasigeodesic by
the choice of the constants A > O,c > 0 in Section 3.
The following lemma is similar to Lemma 6.2 [2].
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Lemma 7. There exists a constant p, which depends on the group G only,
such that the sum Eu of the lengths of all unbound arcs of t-strips in a minimal
special diagram A over G is less than mvrp, where m is the number of t-strips
in A, provided all maximal subpaths of aO consisting of g-edges are (A, c)-
quasigeodesic.

Proof We will use the notations introduced before Lemma 6. Let A...... 0,
be circular diagrams over G, then Eu = E, +... + El, where Ei is the sum of
the lengths of the arcs of type (1) in the boundary 9Ai , i = 1, . . . , 1.

Assume that Eu > mvfp-. Then Ei > ni J /50 for some i, since otherwise
by Lemma 6, Eu = E, + ... + E, < (x150) Ei_, ni <
Consider a circular diagram Ai over G for which above inequality holds. After
a series of elementary transformations of Ai one can find in it a path p such
that IpI = IIpII for every arc p of types (1) and (2) in a&i, where p is homotopic
to p in A. When considering the -y-image of the 1-skeleton of A, in C(G)
(see Section 1), we will keep the same notation p , p for the images of the
paths p and p in C(G).
By Lemma 1, p and p are H-close to each other for some constant H =
H(A, c, G). Below we will use the notation of Lemma 25 [8]. Consider the
images of p for the arcs p of type (1) in C(G) as elements of a set N, and the
images of p for the arcs p of type (2) as elements of N2. Finally, the images
of arcs having type (3) will be treated as elements of N3.
Using the notation of Lemma 2, we obtain o-3 < eni. If p,, ... , A belong to
N,, then cr, = Ej=1 p;I >E;=1(aIIpjII - c) > AEi - nic >_50ani - nic =
ni(si - c).
Therefore, if p is sufficiently large, one can apply Lemma 2 and find c,-bound
subsegments of length greater than 2. 10-'X//50 in a segment p, E N, and
another segment p2 E N, U N2. This means that p, and p2 have (2H + c,)-
bound subsegments q, and q2 of length greater than 10-' A,/p-/50. There are
two cases.

1. p2 E N1, i.e. q, and q2 are subpaths of the boundary paths of t-strips in A.
However, in this case, one can define a contiguity subdiagram of a t-strip to a
t-strip with boundary v,q,v2g2, where IIv,II,IIv2II < E since e > 2H+c, contrary
to the maximality of the choice of the distinguished system of contiguity
subdiagrams in A, as p2 is an unbound arc.
2. p2 E N2 , that is q2 is a subpath of the contour 8O, then a contradiction
arises as above (here there is a new contiguity subdiagram between a t-strip
and aO ).
So the inequality E. > m,,Fp is false and the lemma is proved.

The following lemma gives a lower bound for the sum of the lengths of the
outer arcs of long t-strips in a minimal special diagram A over G.
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Lemma 8. For any minimal diagram A over G, all of whose t-strips are long
and all maximal subpaths of the contour OA consisting of g-edges are (A, c)-
quasigeodesic, the inequality E. >

a
E holds, where Eo is the sum of lengths

of all outer arcs of long t-strips in A and E is the sum of the perimeters of
all t-strips in A.

Proof As E,, = E - El - Eu, where E, is the sum of the lengths of all inner
arcs of t-strips in A. Using Lemma 7, we will obtain the lower bound for EI.
Let us consider three different cases of contiguity subdiagrams between two
t-strips in A.
1. 1' is a contiguity subdiagram between B-sections (see Section 5) of the
t-strips 11, and 112 in A.
We put a(111, F,112) = p1g1p2g2, where IIp,1I,11P211 < e , q, (q2) is a subpath of
a B-section of the t-strip 11, (respectively of 112). Let

0(x111)
t-lxiakxjt(y;)-lb-k (yi)-1

and

0(a112) t-lxi al xjt(yj)-lb-1(yi)-1'

where are in {x1,...,x,} and yz,yz,yJ1,y are in {y,,...,y,}
(Fig.9).

Y2

a1

b1

n2

1

bk

n,

ak

Figure 9.
Since the elements {a, b, x1, y1 i = 1, ... , n} are contained in our alphabet
A the A-section and the B-section of 11, (and similarly of 112) have equal
lengths. Therefore

IIg111 Ilg211 1

1Ia111II ' hJa11211 < 2

2. I' is a contiguity subdiagram between A-sections of t-strips 11, and 112 in
0.
As above, we set x(11,,1,112) = plg1p2g2, where q, and q2 are subpaths of A-
sections of the t-strips 11, and 112i respectively. We will use the same notation
as in the previous case for the labels of the contours of 11, and 112 .
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Let O(q1) - clak,c2 and O(q2) = dlai'd2, where IIc=II,IIdiII < 1 i = 1,2.
Therefore r is a circular diagram over G with contour p,gipzg2 , where

IIp'1 1I, II p' II <- s + 2 and O(q,) =_ akl, O(qi) - ail.
Hence, by Lemma 2.5 [2] there exists a constant M = M(G) > 0 such that
either Ik11,11,1 < M or the images of the paths qi and q2 in C(G) (see Section
1) are compatible, but as was shown in Section 5, the second case contradicts
the minimality of A. So we have 1k1I,1111 < M.
Then Ilgl II < IIail M + 2 = M + 2 as a E A and similarly, IIg2II < M + 2.
Therefore

IIg1II IIg2II M+2
IIan1II' IIan2II < P

since II, and 112 are long t-strips, i.e. IIan1II,IIan2Ii > P-
3. F is a contiguity subdiagram between an A-section of t-strip III and a
B-section of t-strip r12-
Let us set a(11,, F, n2) = plglp2g2 , IIp1II,IIp.:II < e and

Onl) ° t-'xsakx1t(y;)-1b-k(yz)-1,
O(an2) = _2 c,ak'c2, O(q2) = d1b"d2 , where
IIciII,IIdihl < 1 i =1, 2.
As in the previous case, we obtain that either IIk1II,hhl1II < M or the paths q,'
and q2 with labels ak1,b`1 are compatible. The compatibility yields that there
exists a path v in F joining some vertices of the paths q1' and q2 such that
0(v)b¢(v)-' E E(A) (see Section 5) in G. Since the elements 0(v)b¢(v)-1
and a have infinite order in the group G and belong to the same maximal
elementary subgroup in G, we obtain, using; Lemmas 1.16,1.17 [2], that there
are nonzero integers k,l such that ¢(v)bk¢,(v)-1 = a' in G. However, this
contradicts the conditions of Theorem 3.
Therefore, we have Ik11,1111 < M and, similarly as in the previous case

I1a111 l211 <n+2
011111 118r1211 P

An arbitrary t-strip in A may have several (a, b)- and (a, a)-contiguities. Nev-
ertheless, in any case we have estimations I9 < Mp 22 for k = 1, 2, where n is
any long t-strip in A (not necessarily that, which has boundary subpaths q1,
q2 ). In the case of (b, b)-contiguity, we have obtained the estimation

11 <11 01111 2
for the length IIgII of the whole B-section of a t-strip II (which may has several
contiguity arcs).
Then, by Lemma 5, after adding up the lengths of all inner arcs of the t-strips
in A, we obtain E, < (20 M 22 + 2) E.
Finally by Lemma 7, E. < m ,fp-, where m is the number of t-strips in A. As
all t-strips in A are long, Eu < m _ <: E. Therefore

22-21 - 1
> 1E1

since 1 - 20Mp 22 - 2 - >
9

for sufficiently large p.
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7. Linear isoperimetric inequality for the group G

In this section we obtain a linear isoperimetric inequality for the group
given by the presentation (6), i.e. we prove the sufficiency of the conditions
of Theorem 3.

Lemma 9. There exists a constant 0, = 01(G) > 0 such that for any minimal
diagram A over G the inequality IIOA ? 0, E. holds.

Proof Let us consider a fixed contiguity subdiagram r of a t-strip 11 to J.
We put 8(11, r, 050) = p1g1p2g2 (Fig.10). Then q(q1) = 0(p1)-1O(g2)-'O(p2)-1

in the group G and, using IIp1Ii,1lp2II < s, we obtain Ig2I >- Ig1I - 2e.

Figure 10.

As the contour of the t-strip H is (\, c)-quasigeodesic, we obtain Iq, I
)IIg1II- c, and so IIg211 >- Iq2) >- AIIg1II-c-2s, i.e. IIg1II :5 A-' llq211+(c+2,-) A-'.

Finally, IIg1II < IIg2II(A-'(2e'+c+1)) because IIg211 > 1 by definition of a con-
tiguity subdiagram .
Let 01 = )(2e + c + 1)-'. Then IIg2II > 01IIg1 II. Using the fact that different
contiguity subdiagrams are disjoint, we conclude that IIeoII > 8, E0, where
01 depends on the group G only.

Lemma 10. There is a constant 0 = 9(G) > 0 such that for any minimal spe-
cial diagram A over G, all of whose t-strips are long and all maximal subpaths
of 9 consisting of g-edges, are (A, c)-quasigeodesic, we have I I M I I > 0 E.

Proof This follows immediately from Lemmas 8 ,9 where one can set 0 = qB1.

The following assertion establishes a linear isoperimetric inequality for dia-
grams with long t-strips.

Lemma 11. There exists a constant a, = a, (G) > 0 such that for any
minimal diagram A over G, all of whose t-strips are long, n(A) < a,IIeoII
where n(A) is the number of faces in A.

Proof Notice that one can consider all maximal subpaths of the contour 80
consisting of g-edges to be Q-, 1)-quasigeodesic and (A, c)-quasigeodesic for
A < 2, c > 1 as well (details can be found in [2]).
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Excising all t-strips from A, one can obtain a set 0...... A, of circular dia-
grams over G. Obviously, E;_, Ilaoill < E + IIaDII, where E is the sum of
the perimeters of all t-strips in A.
Let ni denotes the number of g-faces in zi. Using the hyperbolicity of G,
we can conclude that ni < 011,9Ai it i = 1, ... ,1 and so no = n, + ... +
ni <a(Ei-, IIa&iII), where no is the number of g-faces in A. Therefore no <
Q(E + IIODII)
Let H be a t-strip in A and 0(011) -t-'xiakxjty,'b-kyi 1. Then II9HII >
IkI(IIaII+ IIbII) = 21k1, i.e. the number of t-faces in H is equal to Ik1 + 2 <
(2 + 1) II8HII = 211,91111. So the total number of t-faces nt in A satisfies the
inequality nt < 2E.

By Lemma 10, we obtain for the total number n(0) of faces in A the estimate

n(0) =nt+no < (3+O)E+0IIaoII (2+0)6-'Ilaoll+a1119oll =al IIOAII,

where a, = 6 + (2+,6)0-' depends on the group G only.

Now we are able to prove the sufficiency of the conditions of Theorem 3.
According to van Kampen's lemma, to prove that the group G is hyperbolic, it
suffices to find a constant a = a(G) > 0, which depends on the group G only,
such that for any minimal special diagram A over G the linear inequality
n(A) _< allaoll holds. Let us consider a minimal special diagram A over
0. Excising all short t-strips from A, we obtain a set Al, ... , Ad of circular
diagrams over G, all of whose t-strips are long.
Notice that the total number of t-strips in c1 is less than or equal to 211,9011
as any distinguished t-strip has two boundary t-edges on the contour aA (see
Section 2). A boundary aDi, i = 1, . . . , d, of the diagram Di consists of arcs
of two types : 1)boundary arcs of the short t-strips of A; 2)subpaths of the
contour OA.
Therefore using the definition of short t-strips (see Section 5) and the remark
above, we obtain , Ilaoill <_ 2pII8Aj + Ilaoll = (2p+ 1)11,9°11

Since all t-strips of /i i = 1, ... , d are long, the number n(Ai) of faces in Di
satisfies the inequality n(Ai) < a, ll,9oi Il by Lemma 11. Thus, for the total
number n' of faces in the union of the diagrams Di, i = 1, . . . , d, we have

n'=n(Al)+...+n(Ad) <a,(EII,9AilI) <a,(2p+1)IIaAII
i=1

Consider a short t-strip H in A, i.e. 11,91111 < p, and set

q5(,911) = t-'xiakxjty,-'b-kya'.

Then 11,91111 ? Ikl(IIaII + IIbII) = 21k1. Hence the number of t-faces in H, which
is equal to 1k! + 2, satisfies the inequality 1k! + 2 < 2p + 2.
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Therefore, for the total number of t-faces n" in the short t-strips, one obtains
nil < (2P + 2) - 2IIa1" II
Finaly, as the total number of faces in A is equal to n(0) = n' + n", we
obtain , that n(0) < al(2p + 1)IIaoII + 2(2p + 2)Ilaoil = allaoll, where
a = a1(2p + 1) + 2(2p + 2).
Since a = a(G) > 0, i.e. a depends on the group G only, this proves the
hyperbolicity of the group G .

8. Necessity of conditions of Theorem 3

1. Let us assume that neither of the subgroups A and B is maximal elemen-
tary in G. We will use the decompositions (4) and (5) of the subgroups A and
B (see Section 1). Denote by E(a), E(b) the elementarizers of the elements
a and b, respectively, in the group G, i.e. the maximal elementary subgroups
of the hyperbolic group G containing a and b, respectively.
By Lemma 1.16 [2], A C E(a), B C E(b), where the the inclusions are proper.
Therefore one can choose elements g1 E E(a) \ A and 92 E E(b) \ B in the
group G. As we assume the group G to be hyperbolic, we can define the
elementarizers E(a), E(b) of the elements a and b in G.
Since t-'at = bin G, we conclude that t-'E(a)t = E(b), by Lemma 1.16 [2].
But the group G is embedded into G by the natural map (see [6]), and so
E(a) C E(a), E(b) c E(b) and t-'gtt,g2 E E(b), i.e. t-'g1tg2 E E(b).
As the subgroup E(b) is maximal elementary in G, there exists a nonzero
integer m such that x E E(b) if and only if xbmx-1 = bfm in G, by Lemmas
1.16, 1.17 [2]. As g E E(b), gbmg -1 = b-m implies g 2bmg -2 = bin, i.e.
[g 2, bm] = 1 in G.

Notice that g' V A, 92 B, and so the element g 2 = (t-'g1tg2)2 has infinite
order in G by Britton's lemma [6]. Further, the order of bm in G is infinite
also (as the element b has infinite order in G) and (g2) n (bm) = {1} in
the group G. Therefore E(b) D Z x Z, where the first factor of the direct
product is generated by g 2 and the second by bm. But this contradicts the
hyperbolicity of G [1,3], and so our assumption is false. Consequently at least
one of subgroups A or B is maximal elementary in G.
2.Assume that for some g E G the subgroup K = gAg-1 n B is infinite.
Obviously, K is an infinite elementary subgroup of G. As I A (a)j, J B

(b) I < oo, one can choose nonzero integers u, v such that ga"g' = b" in G.
Since t-'at = b in G, t-'a"t = b", we obtain the equality ga"g-1 = t-la"t in
G, i.e. (tg)a"(tg)-1 = a". By Lemmas 1.16,1.17 [2], the above equality implies
tg E E(a) in G, but the order of element tg is infinite in G (see [6]). Therefore
as above, one can choose nonzero integers uo,v0 such that (tg)"0 = a"0 in G.
But this is impossible, since the elements (tg)"0 and a"° have different normal
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forms in G (see [6]). Hence our assumption is false. This completes the proof
of Theorem 3.

9. Proof of Corollary 7

Let G and H be hyperbolic groups, A and B be infinite elementary subgroups
of G and H, respectively, and 0 : A -> B a fixed isomorphism. Assume for
definiteness that A is maximal elementary in G.
Define P = G *A=B H = (G * H I a = 0(a), a E A). Below we prove the
hyperbolicity of the group P, i.e. we establish the sufficiency of the conditions
of Corollary 7.
Let K = G * H. It is easy to see that the hyperbolic group K and its iso-
morphic subgroups A and B satisfy the conditions of Theorem 3. Therefore
the group L = (K, t I t-lat = 0(a) , a E A) is hyperbolic. Consider the sub-
group M of L generated by the subgroups t-'Gt and H, i.e. M = (t-'Gt, H)
in L. Obviously, M is isomorphic to P via the map 0 : P -* M given by
q5(g) = t-'gt for g E G and qS(h) = h for h E H (see also [6] ).
Therefore we have to prove the hyperbolicity of the subgroup M of the hy-
perbolic group L. For this purpose, it is sufficient to establish that M is
quasiconvex in L [1,3].
Let us choose sets of generators of the groups G and H, i.e. G = (g1, . . . , 9m),
H = (hl, ... , hi). Then L = (t, gi, h; i = 1, ... , m j = 1, ... , l) and M =
(t-'git, hj i = 1, ... , m j = 1, ... , l).
One can consider two metrics on M: one is induced from L and another is
the word metric in the generators {t-'git, h; i = 1, . . . , m j = 1, . . . , 1} of the
group M (for W E M we denote by IIWIIM the length of the word W in
generators {t-'git, h; i = 1, ... , m j = 1, ... , l} and by IWIM we denote the
minimal length of words W in this alphabet, representing W in M ). It is
clear that

IWIM <_ IIWIIM < IIWII <_ 3IIWIIM

for W E M. To prove the quasiconvexity of M it is sufficient [1,3] to show
that there exists a constant C = C(M) > 0 such that any geodesic word
W E M (i.e. a label of a geodesic path in the Cayley graph C(M) of M)
is (C, 0)-quasigeodesic in L, i.e. for any W E M with the geodesic property
IWIM =IIWIIM we have to prove IIWII < C I W I , where C = C (M) depends
on the group M only.
Thus, let W be a geodesic element of M and let V be a geodesic element of
L such that W = V in L. Consider the Cayley graph C(L) of the group L
and two paths p and q in it with labels q(p) = W, O(q) = V where p_ = q_,
p+ = q+ . By van Kampen's lemma there exists a circular diagram A over L
with contour OA = pq-' (Fig.11).
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Figure 11.

The t-strips of A can be of three types: 1) call a t-strip 11, of A to be of
the first type if the boundary t-edges of a111 belong to the path p ; 2) call a
t-strip 112 of A to be of the second type if the boundary t-edges of '9112 belong
to the path q ; 3) the remaining t-strips will be called the third type strips.
Remove all t-strips of the second type from A in the following way. Let 112
be such a t-strip in A. Denote by a subdiagram of A with a7 A- v1v2',
where v, is a subpath of the contour ar2i v2 is a subpath of q and 0 contains
112 (Fig.12). Let us put q = g1v2g2.

Figure 12.

Since the elementary subgroups A and B are quasiisometrically embedded in
L (see [1,3]), there exists a constant C = C(A, B) such that IIv1II < CIIv2II.
We can excise 0 from A and replace the path q by q' = q,v1Q2. After removing
all t-strips of the second type from A, we obtain a circular diagram A' with
the contour OA' = p(q')-', where IIq'II < CIIgJI.
Notice that the word O(q') consists of syllables t-'ut where u E G and syllables
u' E H since the symbols t}' alternate in O(q') as in W = ¢(p). As W is
a geodesic word in the alphabet {t-'g;t, h; i = 1, ... , m j = 1,-, 1}, i.e.
W has the shortest representation, we obtain IIWIIM < IIO(q')IIM. As was
mentioned above IIWIIM > '-IIWII and II0(q')IIM <_ Iio(q')II 5 0110(q)II =
C I I V I I. This implies that IIWII 5 3C I I V I I, i.e. IIWII 5 C I W I, where C = 3C
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depends on the group M only, and I W I = I I V I I since W = V in L and V is
geodesic in L.
This completes the proof of the hyperbolicity for the group M as well as for
P=G*A=B H.
It remains to establish the necessity of the conditions of Corollary 7. Let
us assume that the group P = G *A=B H is hyperbolic and neither of the
subgroups A and B is maximal elementary in G and H, respectively. Let (a),
(b) be infinite cyclic subgroups of finite index in A and B. By our assumption,
we have the proper inclusions A C E(a), B C E(b). Therefore one can choose
elements g E E(a) \ A and h E E(b) \ B.
Denote by E(a) and E(b) the elementarizers of the elements a, b in the hy-
perbolic group P. Obviously, E(a) = E(b) and E(a) C E(a), E(b) C E(b).
Hence u = gh E E(a) in the group P. Notice, that u has infinite order in the
group P (see [6]) since g,h V A = B in P, and since u E E(a), there exist
nonzero integers m,l such that u'n = at in P, by Lemma 1.16 [2]. But this is
impossible, since the elements u'n and at have different normal forms in the
group P [6].
Therefore our assumption is false. This completes the proof of Corollary 7.

The following assertion is known and follows easily from the proof of Theorem
3 and Corollary 7 (in this case all t-strips of the minimal diagrams are short).

Proposition [1,3]. HNN-extensions (amalgamated products) of two hy-
perbolic groups with finite associated (amalgamated) subgroups are hyperbolic.

10. Proof of Theorem 1

We will use some results of the paper [2]. As the group G is torsion free, all
elementary subgroups of G are cyclic.
The group G is finitely generated and so it is countable: G\{1} = {gi, g,, ...j.
Let F(xl, x2, ...) be the free group with countable set of generators and
F(xl, x2, ...)\{1} = {v1, v2, ...} be some enumeration of the non-trivial words
in F(x,, x2, ...). Let us order the countable set of pairs S2 = {w1, w2, ...} _
{ (gi, vj) , i, j E N } by the type of N.
A pair wk = (gi, vj) will correspond to the operation of finding elements
gl, ... , in of some quotient of G, such that gi = vj (j,.... ) 9n), where vj =
vj (x1 , ... , xn).
Let Gi be a non-elementary torsion free hyperbolic quotient of the group G
such that for any wj = (gk, vi) with the property wj < wi there exist elements
91, in E Gi such that g' = vi (gl, ... , gn) in Gi, where gk is an image of gk
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in Gi and vi = vi (xi, ... , xn). Now we show how to construct a group Gi}1,
where wi+1 = (g,n, v8) is a next element in S2 after W.
For the image of an element in Gi, we will keep the same notation. We
can consider the word vs = v8(xl, ... ) xn) as an element of the free group
F(xi, ... , xn) for some n. Recall that F(xl, ... , xn) is a hyperbolic group.
Let E(g,n) be the elemetarizer of the element gm in Gi. Since the group Gi is
torsion free, E(g,n) = (h). for some h E Gi, i.e. g,n = h'k for k E Z.
There are two cases.
1. The word v8 is not a proper power in F(xl, ... , xn), that is E(v8) = (v8) ,

in the group F(xi,... , xn). Consider the group G; = Gi * F(xl, .... xn).
Obviously, G; is a hyperbolic group as a free product of hyperbolic groups
[1,3]. Let us denote by A = (g,n),, and B = (v8). the infinite cyclic subgroups
of G; generated by g. and v8 , respectively. It is easy to see that g-' Ag n B =
{1} in Gi for any g E Gi, and as E(v8) = (v8). in G;, B is a maximal
elementary subgroup of G. Therefore, by Theorem 3, the HNN-extension
Gi = (G;, t I t-'g,nt = v8) of the group G; with associated subgroups A and B
is a torsion free non-elementary hyperbolic group, since Gi is a torsion free.
Since Gi is a non-elementary torsion free subgroup of the non-elementary
hyperbolic group Gi, by Theorem 2 [2] there is a non-elementary hyperbolic
quotient G" of the group Gi such that: 1) the natural homomorphism e of
Gi onto G1 is surjective on Gi, i.e. e(Gi) = G;'; 2) e induces a bijective map
on sets of conjugacy classes of elements having finite orders in Gi and GZ'
respectively, i.e. the group GZ' is torsion free .

Therefore, the group Gt is a non-elementary torsion free hyperbolic quotient
of the group G since E(Gi) = GL', and the group Gi is quotient of G. Let
us keep the same notations for the images of the elements t,g,n,vs (xl, ... , xn)
in G'. (notice that t is the image of some element of G). Then we have
gm = v8(tx,t-', ... tint-') in the group Gz'. So one can set Gi+l = G;'.
2. The word vs is a proper power in F(x1i... , xn), that is E(v8) _ (ve)x in
F(x...... xn) and v8 = Vu for some u E Z. If k = ±1, then the construction
of the group Gi+i is similar to the one described above. Hence we are left with
the case Jkl > 2. As the group Gi is a non-elementary hyperbolic group, by
Lemma 3.1 [2] there exists an element b E Gi such that g(h).g-' n (b). = {1}
in Gi for any g E Gi. Let us define the subgroups A and B of Gi as A =
(h)am, B = (bu).. Since the subgroup A is maximal elementary in Gi and
gAg-' n B = {1}, the HNN-extension Gi = (Gi, t I t-'ht = bu) of the group
Gi with associated subgroups A and B is a torsion free hyperbolic group by
Theorem 3
As Gi is a non-elementary torsion free subgroup of the non-elementary hyper-
bolic group Gi, there exists a non-elementary torsion free hyperbolic quotient
M of the group Gi such that the natural homomorphism e of Gi onto M is
surjective on Gi, i.e. e(Gi) = M, by Theorem 2 [2]. Therefore M is a non-
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elementary torsion free hyperbolic quotient of the group G as G. has the same
property. Further, let us consider the group M' = M * F(xl, ... , xn) and its
two isomorphic subgroups A = (b')c, B = (v8)OO. Obviously, gAg-1nB = {1}
for any g E M', and B is a maximal elementary subgroup of M' (since
E(v8) = (vg)D in F(x,,... , xn) ). So by Theorem 3, the HNN-extension
M' = (M', w I w-lbkw = v8) is a torsion free (as M' is torsion free) non-
elementary hyperbolic group. Similarly, as was described above (by Theorem
2 [2]), there is a non-elementary torsion free hyperbolic quotient L of the
group M' such that the natural homomorphism e of M' onto L is surjective
on M. Thus L is a quotient of the group G since e(M) = L and M is a
quotient of G.
Let us consider the images of the elements v8, gm, h, v87 t, w, b in L (we
will keep the same notation for them). We have the following equations in
L gm = hk = (tbut-1)k, v8 = ,Du = (w-lbkw)". Therefore gm = (tw)v8(tw)-1,
and so g. = vg((tw)x,(tw)-1,..., (tw)xn(tww)-1) in the group L.
Now set Gi+1 = L and define H = limes Gi as the inductive limit of the
quotients Gi. Then H is a quotient of the group G. Clearly, H is non-trivial
as all groups Gi are infinite (they are non-elementary hyperbolic groups and
so infinite by definition). Also, H is a torsion free group since all Gi are
forsion free. The group H is verbally complete by construction. So H is a
required group.

11. Proof of Theorem 2

As in the proof of Theorem 1, we define an ordered set of pairs

SZ = {w,, w2, ...} = {(gi, vj), i, j E N},

where G \ {1} = {g1, g2, ...} and F(x1, x2, ...) \ {1} = {v,, v2, ...}.
Let Gi be a non-elementary hyperbolic quotient of the group G such that
for any wj = (gk, vi) with the property wj < wi, the image g' of gk in Gi
has finite order in Gi and there exist elements g,, ... , gn E Gi such that
g'k= vd (g-l) ) gn) in Gi where vl = vl (x1, i xn)

o

Let us show how to construct a group Gi+,, choosing wi+1 = (gm, vg) as the
next element of St after wi. For the image of the element gm in Gi, we will
keep the same notation. As v8 E F(x,, X2. ...), v8 = v8(x1) ... , xn) for some
n E N, i.e. we can regard v8 to be an element of a free group F(x1i... , xn).
If the order of gm is infinite in Gi, we consider the elementarizer E(gm) of the
element gm in Gi and by Lemma 1.16 [2] we can find a nonzero integer l such
that (g;). is a normal subgroup of E(gm). Further, by Theorem 3 [2], there
exsists a quotient Gi of the group Gi such that: 1) Gi is a non-elementary
hyperbolic group; 2) the element g,, has finite order in Gi. Then G. is non-
elementary hyperbolic quotient of the group G (as Gi has the same property).
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Therefore the element ghas finite order in Gi. Let k be the order of the
element g,,, in Gi.
Denote by E(Gi) the unique maximal finite normal subgroup of the non-
elementary hyperbolic group Gi (the elementarizer of Gi [2]). If E(Gi) is
non-trivial, then one can pass to the quotient Gi/E(Gi). So we can assume
that E(Gi) = {1}. Let us consider the group H = (x1, ... , x I v; = 1),
that is a quotient group of the free group F(xl, ... , by the normal closure
of the word v8. Obviously, one can assume v8 to be cyclically reduced in
F(xl, ... , Then by Theorem 5.2 [6; ch.4] the order of the image of v8 in
the group H, which will be denoted by the same letter, is equal to k. Further,
H is a hyperbolic group by Newman's theorem 5.5 [6; ch.4] because there is
Dehn's algorithm for it (see also [3]). Consider the subgroup A = (gm)k of
Gi and the subgroup B = (v8)k of H. As the subgroups A and B are finite
of the same order, the group Gi = Gi *A=B H = (Gi, H I g,, = v9) is a non-
elementary hyperbolic group by the above Proposition. Since E(Gi) = {1}
in Gi, obviously, E(Gi) = {1} in Gi and so (by Theorem 2 [2]) there exists a
non-elementary hyperbolic quotient G; of the group Gi such that the natural
homomorphism e of Gi onto G; is surjective on Gi, i.e. Gi is a quotient of the
group Gi and hence of G.
Notice that g,,, = v8(x1 i ... , for the images of g,,,, V,(x1 i ... , x,) in the
group G' (keeping the same notations). So one can put Gi+1 = G. Finally,
define G = lim-, Gi as the inductive limit of the quotients Gi. Clearly, G is
a quotient of the group G. The group G is non-trivial as all groups Gi are
infinite being non-elementary hyperbolic groups. Moreover, d is a verbally
complete torsion group by construction. Hence d is a required group.

Proof of Corollaries 1-6. Since hyperbolic groups are finitely generated,
Corollary 1 and Corollary 2 follow immediately from Theorem 1, Theorem 2
respectively.

As any verbally complete group is divisible and since a finitely generated di-
visible abelian group is trivial, Corollary 3, Corollary 4 are just consequences
of Theorem 1 and Theorem 2.
Then Corollary 5 follows from Corollary 3 and Corollary 6 follows from Corol-
lary 4.

References

[1] M.Gromov, Hyperbolic groups, in: Essays in Group Theory, Publ., Math.
Sci. Res. Inst. 8, (S.M.Gersten, ed.), (1987), Springer, New York pp. 75-
263.



290 K. V. Mikhajlovskii and A. Yu. 01'shanskii

[2 ] A.Yu.OI'shanskii, On residualing homomorphisms and G-subgroups of
hyperbolic groups, Int.J.Algebra and Comput. 3 No. 4 (1993), pp. 365-
409.

[3 ] E.Ghys and P. de la Harpe, Espaces Metriques Hyperboliques sur les
Groupes Hyperboliques d'apres Mikhael Gromov, Birkhauser, (1991)

[4 ] M.Bestvina and M.Feighn, A combimation theorem for negatively curved
groups, J. Differ. Geom. 35 No. 1 (1992), pp. 85-102.

[5 ] O.Kharlampovich, A.Myasnikov, Hyperbolic groups and free construc-
tions, To appear.

[6 ] R.Lyndon and P.Schupp, Combinatorial Group Theory, Springer-Verlag,
(1977).

[7 ] A.Yu.OI'shanskii, Geometry of defining relations in groups, Math. and
Its Applications (1991), (Russian) English translation.

[8 ] A.Yu.OI'shanskii, Periodic quotients of hyperbolic groups, Mat. Zbornik
182 No. 4 (1991), pp. 543-567. In Russian, English translation in Math.
USSR Sbornik 72 No. 2.

[9 ] A.Yu.OI'shanskii, Infinite groups with cyclic subgroups, In Russian. Dokl.
Acad. Nauk SSSR 245 (1979), pp. 785-787.

[10 ] V.S.Guba, A finitely generated divisible group, Izv. Acad. Nauk SSSR 50
(1986), pp. 883-924.



Free Actions of Abelian Groups on Groups

Peter M. Neumann and Peter J. Rowley

Queen's College, Oxford, OX1 4AW.

UMIST, Manchester, M60 1QD.

The theorem

A group H of automorphisms of a group K is said to act freely if a' 4 a
whenever a E K - {1} and h E H - {1}. The main purpose of this note is to
place the following theorem on record. Some commentary follows the proof.

Theorem. Let K be a group that admits an infinite group H of automor-
phisms acting freely. If H is abelian and has only finitely many orbits in K
then K is abelian.

Proof. For each h E H there is a commutator map ryh : x H x-'xh on K
to itself. Since H acts freely, if h $ 1 then ryh is injective. Because H is
commutative Yh commutes with the action of H, and therefore it maps H-
orbits to H-orbits. Since there are only finitely many H-orbits, if h # 1 then
'Yh must be surjective.
Suppose now that k E K - {1}, h E H and kh is conjugate to k in K, that
is, kh = y-'ky for some y E K. If h # 1 then there would exist x E K for
which y = xryh, and so

kh = x-hxkx-lxh,

whence xkx-1 would be fixed by h. Since the action of H is free we conclude
that h = 1. Thus, for any k E K - {1} the only element of the H-orbit of
k that is conjugate to k is k itself. Equivalently, each conjugacy class of K
meets each H-orbit in at most one element. It follows that if the number
of H-orbits in K - {1} is m then all conjugacy classes of K have size < m.
By a well-known old theorem of B. H. Neumann (see [10], Theorem 3.1) the
commutator subgroup K' is finite. But K' is H-invariant and non-trivial H-
orbits are infinite. Therefore K' = {1}, that is, K is abelian, as the theorem
states.
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Commentary

Let G be a permutation group on a set 0. Following Wielandt we write Ga for
the stabiliser of the point a of 52, and Ga,p for the subgroup fixing both a and
0. Recall that the rank of G is the number of orbits of G acting on 522. If G
is transitive on Q it is the number of orbits of Ga. In his symposium lecture
[Durham, 13 July 1994] the first-named author explained that, in order to
make both a historical point and a mathematical point, he would use the
following (nowadays non-standard) terminology: if
(1) for any two distinct points a, Q, we have Ga,R = {1}, and
(2) there is a normal subgroup K of G that acts regularly on SL
(that is, K is transitive and K. = {1}), then G would be said to be a
Frobenius group. In standard terminology K is then known as a Frobenius
kernel and a stabiliser G. is known as a Frobenius complement for G. Since
K acts regularly, once a base-point a is chosen, SZ may be identified with K
(a point w is identified with the unique element x of K such that ax = w)
and it is well-known (and not hard to see) that the action of Ga on 52 is then
identified with its action by conjugation on K. An immediate consequence
of the theorem is

Corollary 1. Let G be a Frobenius group with kernel K and complement H.
If H is abelian and G has finite rank then either G is finite or K is abelian.

Typical examples are groups of affine transformations z H az + b of a field
F, where b ranges over F and a ranges over a subgroup of finite index in the
multiplicative group FX.

Corollary 2. If G is a Frobenius group of finite rank whose complement H
is cyclic (or finitely generated abelian), then G is finite.

We believe it to be a matter of folk-lore that Corollary 2 follows from Corol-
lary 1. Here is one line of argument (for the case where H is cyclic). Let a
be a generator of H, let K be the Frobenius kernel, let x E K - {1}, and let
xi := xa` for i E Z. The elements xo, xox1, xoxlx2, ... cannot all be in differ-
ent H-orbits and it follows easily that there exist r, s, t such that 0 < s < t
and xox1 x, = xex8+1 xt. If r = t then xox1 xa_1 = 1 (from which it
follows that s > 1) and we set m := s - 1; otherwise we set m := max(r, t).
The equation yields that x,,, E (xo) ... , xm,_1), and from this, by applying
a as many times as necessary, we find that xi E ( x 0 , . . . , xm_1) for i > m.
Similarly, applying a-1, a-2, ... successively, we find that xi E (x0, ... ) xm_1)

for i < 0. Thus (xo,... , x,,,_1) is an H-invariant subgroup L of K. By Corol-
lary 1 we may assume that K is abelian. Then L is a finitely generated abelian
group that has only finitely many characteristic subgroups (since H has only
finitely many orbits in L), and it follows easily that L is finite. Letting x
range through a set of representatives for the H-orbits in K we see that K
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may be expressed as the product of finitely many such finite groups L, and
so K is finite. Therefore G is finite, as asserted.

Corollary 2 ought to be a significant step towards the solution of a more gen-
eral problem about permutation groups (see [11], or [5, §3] for some back-
ground). This concerns groups which, in the symposium lecture mentioned
above, were called Maillet groups, namely, transitive permutation groups
(G, fl) satisfying condition (1). Edmond Maillet introduced and studied such
groups in 1892 in his doctoral thesis [6] and some later papers (in particular
[7, 8]). He showed that if I52I < 200 then they have regular normal subgroups.
William Burnside took the matter further and, using results which we discuss
below, extended Maillet's theorem to all cases where X11 < 81000 000. Ulti-
mately, a famous theorem proved by Frobenius in 1901 (see [3]) completely
solved Maillet's problem. In our language it asserts that every finite Maillet
group has a regular normal subgroup; that is, for finite groups there is no dis-
tinction between Maillet groups and Frobenius groups. For infinite groups,
however, the former constitute a very much larger class-for example, a free
group of rank 2 has 2'° different faithful representations as a Maillet group,
but only countably many faithful representations as a Frobenius group. In
this language (which has been changed from that used in [5] and [11]) the
problem is this:

Problem A. Does there exist an infinite Maillet group (G, Q) of finite rank
in which a stabiliser G,,, is cyclic? (Or finitely generated abelian?)

By analogy with Burnside's partial results for the finite case it is tempting
to conjecture that the answer is No. Before Frobenius proved his theorem
Burnside had already given quite simple proofs in the special cases

(i) where IGaI > IQ I1 (see [1, pp. 142-143]), and
(ii) where the stabilisers are abelian (even soluble; see [2]).

The condition in (i) can be rewritten as the inequality IGal > r, where r is
the rank of (G, 1). One might hope therefore that Burnside's argument for
(i) could be extended to the case of a group where the stabilisers are infinite
and the rank is finite, but it uses Sylow's theorems and combinatorial and
arithmetical arguments depending essentially on the finiteness of G. A more
promising possibility is his proof of (ii), which was, in effect, the first appli-
cation of the transfer homomorphism (in a character-theoretic form). It is
possible that some such technique might be used to show that a Maillet group
of finite rank with cyclic stabilisers (perhaps even with abelian stabilisers) has
a regular normal subgroup. If so, then our theorem, or its Corollary 2, would
solve the problem.
As was noted in [5], the special case of the conjecture in which the rank of
G is 2 (that is, G is doubly transitive) is known to be true. It was proved by
Karolyi, Kovacs and Palfy in [4] and independently by Mazurov in [9] that
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if the stabilisers in a doubly transitive permutation group G are abelian (in
which case the group must be a Maillet group) then G has an abelian regular
normal subgroup; in particular, if the stabilisers are cyclic then G must be
finite.
In a different direction, the theorem suggests the following further problems:

Problem B. Does there exist an infinite group K that has a cyclic (or
finitely generated abelian) group of automorphisms with only finitely many
orbits?

Problem C. What can be said about a group K that admits an abelian group
H of automorphisms having only finitely many orbits?

A natural conjecture is that such a group must be finite-by-abelian-by-finite,
but again, we have made little progress towards a proof.
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Notes added in proof, 1 March 1997

(1) The argument presented in the first five sentences of the second paragraph
of the proof of the theorem is to be found in W. Burnside, Theory of groups
of finite order, Second Edition, Cambridge 1911, p.90; it appears also in
B. Huppert, Endliche Gruppen I, Springer, Berlin 1967, p.500.

(2) The first named author acknowledges that the terminology he introduced
in his lecture is not standard and that it sould be better to conform with
convention so that what are here called `Maillet groups' should be called
`Frobenius groups', and what are here called `Frobenius groups' should be
called `split Frobenius groups'.
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Finitely Presented Soluble Groups

John S. Wilson

Lecture 1. The Golod-Shafarevich Theorem for finitely presented
groups

In the course of their work on the class field tower problem, Golod and Sha-
farevich [15] obtained an important result concerning presentations of finite
p-groups. This result, as improved by Vinberg [24] and Gaschiitz, asserts
that if G is a finite p-group which can be generated by d and no fewer el-
ements, then, in any presentation of G with d generators, the number r of
relations satisfies r > &. It follows easily that for a presentation of G with
n generators and r relations the inequality

r>n-d+id'
must hold. As a by-product of this work, Golod [14] was able to give a
construction demonstrating for the first time the existence of infinite finitely
generated p-torsion groups. In [25] a result was proved which applies to all
finitely presented groups and tightens the link between the above inequality
and Golod's construction. The proof in [25] was given in the context of pro-p
groups. In this lecture we shall give a direct proof, and afterwards discuss
some extensions and some related results for Lie algebras and pro-p groups.
We write d(G) for the smallest number of elements that can generate a finitely
generated group G, and Gab for the abelianization of G; thus G' = GIG',
where G' is the derived group of G.

Theorem 1.1. Let G be a group having a presentation with n generators
and r relations, and let d = d(Gab) > 2. Then either

(i) the inequality
r > n - d + 4d2 (1)

holds, or
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(ii) there exist a prime p and normal subgroups N<G such that GIN is a
(finitely generated) infinite residually finite p-torsion group.

Theorem 1.1 demonstrates that infinite finitely generated p-torsion groups
exist in abundance. If G is a finite p-group then d(Gab) = d(G), and Theorem
1.1 applied for presentations on d generators gives r 3 2; therefore we recover
the Golod-Shafarevich Theorem in a slightly weakened form. The restriction
d >, 2 in the hypothesis is necessary, since the inequality (1) fails, for example,
for the presentation of Z with one generator and no relations. Consideration
of abelianizations yields the inequality r >, n - d for any finitely presented
group, and for the cases d = 0, 1, the method of proof of Theorem 1.1 gives
no more information than this.
Since finitely generated soluble torsion groups are finite, Theorem 1.1 has the
following result as a special case:

Corollary 1.2. If G is a soluble group having a presentation with n gener-
ators and r relators and if d = d(Gab) 3 2 then (1) holds.

We have n - d + d2 = n + 4(d - 2)2 - 1, and so (1) implies r > n - 1, with
equality only if d = 2. Thus Theorem 1.1 has the following consequence:

Corollary 1.3. Suppose that G is a group having a presentation with n
generators and r relations. If n - r > 1 and if d(Gab) > 2, then G has an
infinite residually finite p-torsion image for some prime p.

It was shown by B. Baumslag and S. Pride [3] that if G is a group having a
presentation with n generators and r relations with n - r >, 2, then G has a
subgroup of finite index which maps onto a free group of rank 2.
Our third corollary gives information about the subgroups of finite index in
finitely presented groups.

Corollary 1.4. If G is a finitely presented group which has no infinite
torsion quotient groups then there is a constant K > 0 such that

d(Hab) S KIG : Hji

for all subgroups H of finite index.

The significance of this result lies in the index
2;

a similar inequality without
this index (and with ic = d(G)) holds for any finitely generated group G, by
the Reidermeister-Schreier theorem.

Proof. Suppose that G has a presentation with n generators and r relations.
Set h = IG : HI and d = d(Hab). We only need to consider the case when
d > 2. By the Reidermeister-Schreier theorem, H has a presentation with
nh - (h - 1) generators and rh relations, and it is easy to see that H can
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have no infinite torsion quotient groups. Therefore Theorem 1.1 applied for
H gives

rh>nh-h+1-d+4d2,
and hence

(d-1)2<, (r-n+1)h.
The result follows on taking square roots.

Notation

The following notation will be used in the proof of Theorem 1.1. Let F be
the free group on a set X with n elements and let f be a field. Write R for
the group algebra PF of F over t and I for the augmentation ideal of R. As
a left ideal, I is generated freely by the set Y = {x - 11 x E XI. Moreover,
if k E N and u E P, then u can be written uniquely in the form >yEY vyy
with each v, in Ik-1. We have nk Ik = {0}; if u E Ik\Ik+l write 6(u) = k,
and write 6(0) = oo.

Lemma 1.5. (Vinberg, [24]) Let S C_ I. Define Sk = Is E S I S(s) = k},
suppose that each Sk is finite and write Sk =_ ISkI. Let J be the ideal of R
generated by S.
(a) Set Ck = dim (R/(J + Ik+l)) for k >,0. Then

k

Ck - 1 i nck-1 - sjck-j
j=1

(2)

for k >_ 1.

(b) Define the power series ors(t) = Ei,l sit' and let t be an element of [0, 1]
such that us(t) converges. If the sequence (dim R/(J + Ik)) of integers
is eventually constant then 1 - nt + os(f) > 0.

Proof. (a) Fix k, write Uj,k Sj = {z1, , zm} where 6(zi}1) > 6(zi) for each
appropriate i, and set ki = 6(zi) for each i. Define

M
A = ® R/(J + Ik_.ki+1)

i=1

and let B be the direct sum of n copies of R/(J + P). Thus

k m

E sjck-j = E ck-ki == dim q,
j=1 i=1

and we must prove that

Ck - 1 >- nck_1 - dim A.
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This will follow if there is a exact sequence

A__f4B_±4I/(J+Ik+1) -a 0,

since then

299

nck_1 = dim B = dim im b + dim ker 0

=ck-1+dimimcp<ck-1+dimA.
Set Y = {yl, , yn} and write A, B respectively for the direct sums of m, n
copies of R. Define

':B -I by (tl,...tn)HEtiyi

and

4) : A -a B by (vi, ... , Vm) ,+ (ul, ... un),

where u1, . , un are the elements of R uniquely determined by E v;z;
E uiyi. It is not difficult to verify that D, 41 induce maps cp, Eli with the
required properties.
(b) Set y(t) = Eo cktk. Multiplying the inequality (2) by tk and summing
over k, we have

'y(t) - (1 - t)'
> nt-y(t) - us(t)-y(t),

and hence

y(t)(1-nt+as(t)) > (1-t)-1, (3)

provided that y(t) and as(t) are convergent.

Now set bo = c0, define bk = Ck - ck_1 for k > 1 and write /3(t) = Eo bktk.
Since the sequence (Ck) is eventually constant, ,6(t) is a polynomial. We have
ck = Ek o bi, and so y(t) = Q(t)/(1-t). Therefore y(t) converges in [0,1), and
if as(t) is convergent at t E [0, 1) we conclude from (3) that 1-nt+as(t) > 0.
If as(1) is convergent then as(1) = limt-,1_ as(t) by Abel's theorem on power
series, and so 1 - n + as(1) > 0 as required. This completes the proof of
Lemma 1.5.

Let S be a subset of R and let J be the ideal generated by S. We define the
closed ideal J generated by S to be nk>l(J + Ik). Clearly we have j + Ik =
J + Ik for every integer k; and R/J is finite-dimensional if and only if the
sequence (dim (RI (J + Ik+1))) is eventually constant.

Lemma 1.6. As in Lemma 1.5 let S C I, suppose Sk = I{s E S I 5(s) = k}j
finite for each k, and write as(t) = >i>1 siti. Let E = {ei I i E N} C_ I and
let t E (0, 1). If us (t) converges and 1 - nt+as(t) < 0, then there is a set S+
with S C S+ C I such that
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(i) I Is E S+ 1 5(s) = k}I is finite for each k,
(ii) 1 - nt + as+(t) < 0, so that dimR/K is infinite, where K is the closed

ideal generated by S+, and
(iii) every element of E has nilpotent image in R/K.

For example, we could take E = {u 1 1 + v E F}, or, if t is countable, we
could take E = I; in the latter case we would conclude that the image of I
in RIK is a nil ideal.

Proof. We find a positive integer q large enough to ensure that

1 - nt + as(t) + q-1(1-- t)-' < 0.

Thus
00

1 - nt + as(t) + tqi < 0,

since
tqi < q-ltg(i-1) (1 + . . . + tq-1)

for each i > 1. Let S+ = S U {eqi I i E N}. Clearly we have 8(e;') 3 qi for
each i. It follows that

00 00

and

as+(t) = US (t) + t6(,,!') US (t) + tq',
1 1

1 - nt + as+(t) < 0.

This completes the proof of Lemma 1.6.

We now specialize to the case when t = Fp and, in the notation of Lemma
1.6,chooseE={ul1+uEF}. IfuEEanduteS+thenforp'>,mwe
have

(1 + u)P' = 1 + uP" - 1 (mod K).

Therefore the image G of F in R/K is a p-torsion group. Each of the rings
R/(K+I') is finite, and the kernels of the maps from G to the groups of units
of these rings have trivial intersection, so that G is residually finite. Finally,
G spans R/K as a vector space over F,,, so that if dim R/K is infinite then
so is G.

Lemma 1.7. If G has a presentation N >-+ F-G with n generators and r
relations, and if d = d(G/G'GP), then G has such a presentation with just
n - d relations not in F'FP.

Proof. The group F/F'FP may be regarded as an n-dimensional lFP-vector
space, and since F/N = G we have F/F'FPN = G/G'GP so that the image
of N in F/F'FP has dimension n - d. We take relators w1i , from N
mapping to a basis of this subspace, and multiply each remaining relator by
an element of (w,, , such that the product is in F'FP.
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Proof of Theorem 1.1 We choose p with d = d(G/G'G"), set t = F, and
take a presentation N F- G with the property given in Lemma 1.7; say
N = (w11 , . , wF). Suppose that (i) does not hold. Then r < n - d +;d2, so
that r1 < 9'-d2 where r1 = r - (n - d). Hence, since d > 2, we can find t E (0,1)
with 1 - dt + r1t2 < 0, i.e. with

1 - nt + ((n - d)t + r1t2) < 0.

Now r1 is the number of relators in F'FP, and it is well known and easy to
check that F'FP = F fl (1 + I2). Thus we certainly have

1-nt+as(t) <0

where -1}.
Choose E = {u 11+ u E F}, and construct S+, K and G as above. The
group G is an image of G which is an infinite residually finite p-group, and
Theorem 1.1 follows.

Some related results

A result analogous to Theorem 1.1 holds for presentations (in the category of
pro-p groups and continuous homomorphisms) of pro-p groups.

Theorem 1.8. Let G be a pro-p group having a presentation with n gener-
ators and r relations. If d = d(G) >, 2, then either the inequality

r>n - d + 4 d2 (1)

appearing in Theorem 1.1 holds, or each finitely generated dense abstract
subgroup of G has an infinite residually finite p-torsion quotient group.

Theorem 1.1 can be deduced from the above result by considering pro-p com-
pletions. Theorem 1.8 has the following consequence, which has no direct
counterpart for abstract groups:

Corollary 1.9. If G is a finitely generated soluble pro-p group and N is a
closed normal subgroup such that GIN is isomorphic to the group of p-adic
integers, then N is a finitely generated pro-p group.

For mare details about the above results, see [25].

Next we consider Lie algebras. What follows is work of my research student,
Jeremy King. Before describing King's result we need a definition. An ele-
ment y of a Lie algebra L is called ad-nilpotent if the map ad(y) : 1 H ly is
nilpotent, and L is said to be weakly ad-nilpotent with respect to a gener-
ating set Y if every commutator of weight at least 1 in the elements of Y is
ad-nilpotent. It follows from work in Gruenberg [18] that a finitely generated
soluble weakly ad-nilpotent Lie algebra is nilpotent.
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Theorem 1.10. (King, [19]) Let L be a Lie algebra having a presentation
with n generators and r relations and let d = dim e(L/[L, L]) > 2. Then either
the inequality (1) holds or L has a quotient which is infinite-dimensional,
residually nilpotent and weakly ad-nilpotent. In particular, (1) holds if L is
soluble.

As in the proof of Theorem 1.1, let F be the free group on a finite set X, let
Y = {x - 1 I x E X }, and let R = tF. The subalgebra A of R generated by
Y is the free associative t-algebra on Y. Theorems corresponding to Lemmas
1.5, 1.6 hold for A, and in fact they follow easily from Lemmas 1.5, 1.6. The
Lie algebra L(Y) in A generated by Y is the free Lie algebra on Y. Thus
some of the proof of Theorem 1.10 can be modelled on the proof of Theorem
1.1. However the easy argument used in the proof of Theorem 1.1 to show
that the group G is infinite is not available for Lie algebras. In the proof
of the final assertion, the result of Gruenberg plays an analogous role to the
finiteness of finitely generated soluble torsion groups in Corollary 1.2.

Finally, we describe some results which depend on nilpotence criteria of Zel-
manov [28], according to which every finitely generated residually finite p-
torsion group satisfying a law is finite and every finitely generated weakly
ad-nilpotent Lie algebra satisfying a polynomial identity is nilpotent. Com-
bining these assertions with Theorems 1.1 and 1.10, we conclude that the
inequality (1) must hold for finitely presented groups with laws, and for Lie
algebras with polynomial identities.
A closer analysis yields the following result.

Theorem 1.11. (Wilson and Zelmanov, [27]) If G is a finitely presented
group having a presentation for which the inequality (1) does not hold, then,
for some prime p, the pro-p completion of G has a free abstract subgroup of
rank 2.

This suggests the following problem, which seems likely to be difficult.

Problem. Suppose that G is a group having a presentation for which (1)
does not hold. Must G have a free subgroup of rank 2?

Lecture 2. Criteria for finitely presentability and a case study

Since the class of finitely presented groups is extension-closed and contains
the cyclic groups, all polycyclic groups are finitely presented; and, in par-
ticular, all finitely generated nilpotent groups are finitely presented. How-
ever, the significance of finite presentability for the structure of more general
soluble groups seems hard to determine. Even for metabelian groups the
matter is quite delicate. While there are many finitely generated metabelian
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groups which are not finitely presented, it was shown by Baumslag [4] and
Remeslennikov [21] in 1973 that every finitely generated metabelian group
can be embedded in a finitely presented metabelian group. For example, the
wreath product Z wr Z, which is isomorphic to

(a, x I [a, aw] = 1 for all words w),

can be embedded in the metabelian group

(a, x, y I as = aax, [x, y] = 1, [a, ay] = 1).

In 1980, Bieri and Strebel [10] succeeded in finding a geometrical interpre-
tation of the the property of being finitely presented for metabelian groups.
We shall discuss this interpretation later in the lecture.
Further examples of finitely presented soluble groups are provided by certain
groups of matrices over fields (especially arithmetic and S-arithmetic groups).
Every such group is virtually nilpotent-by-abelian, i.e., it has a nilpotent-by-
abelian normal subgroup of finite index.( The group G with presentation

(x, y, a I 1 = [x, y, y] = [x, y, x] = [ax, aY] axe = axaY a[x,Y1 = a2)

is an example of a finitely presented group which is soluble but not virtually
nilpotent-by-abelian: Robinson and Strebel showed in [22] that the normal
subgroup A generated by a is abelian and is the largest nilpotent normal
subgroup, and clearly the quotient group G/A is a free nilpotent group of
class 2 on 2 generators.
I know of no examples of finitely presented soluble groups, or, indeed, of
finitely presented residually finite groups having no free subgroups of rank 2,
which are not virtually nilpotent-by-(nilpotent of class at most 2).

Necessary conditions for finite presentability

We shall now recall briefly some necessary conditions for a soluble group to
be finitely presented, and then we shall make a case study using the last of
these, which is the condition given by Corollary 1.4.

(1) The homological criterion
It is well known that the finite presentability of a group G implies that its
multiplicator M(G) = H2(G, Z) is finitely generated. Using the fact that
finitely generated modules for polycyclic groups are noetherian, one can easily
strengthen this to the following statement:

Lemma 2.1. If G is finitely presented and K is a normal subgroup such that
G/K is polycyclic, then the multiplicator M(K) is finitely generated, regarded
as a G/K-module.
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(2) The HNN criterion

In [9], Bieri and Strebel proved the following result:

Lemma 2.2. Suppose that G is finitely presented and has no free subgroup
of rank 2. Then for each N such that GIN = Z, the group G is an ascending
HNN extension over a finitely generated base group contained in N.

This result allowed Bieri and Strebel to give a rather precise description of
finitely presented nilpotent-by-(infinite cyclic) groups:

Theorem 2.3. Suppose that N is a nilpotent normal subgroup of a finitely
generated group G and that GIN is an infinite cyclic group. The following
conditions are equivalent:

(i) G is finitely presented;
(ii) GIN' is finitely presented;

(iii) G is an ascending HNN extension over a finitely generated subgroup of
N;

(iv) there is an element t E G such that G = (N, t) and such that the char-
acteristic polynomial of the endomorphism of Nab 0 Q induced by t has
all coefficients in Z.

(3) The sphere criterion

Let Q be a finitely generated abelian group and let V (Q) = Hom (Q, R).
Thus V(Q) is a real vector space of dimension n, where n = dimQ(Q 0 Q.
Fix a norm 1111 in V(Q) and write S(Q) for the (n - 1)-sphere { v E V(Q) I
IIvll = 1 }. For v E S(Q) let Q be the submonoid { q E Q I v(q) > 0 }. In
[10], Bieri and Strebel associated with each ZQ-module M the set

EM = { v E S(Q) I M is a finitely generated module for the ring ZQ }.

It transpires that EM is an open subset of S(Q).
Now let G be a finitely generated group, write K = G' and set QG = Gab and
MG = Kab. So MG can be regarded as a QG-module and the set EM0 may
be defined; it is an open subset of the sphere S(QG) and is an invariant of G.
Consider the following condition:

(SC) EMG U -EMC = S(Q).

Bieri and Strebel proved the following remarkable result:

Theorem 2.3. If G is a finitely presented group having no free subgroups
of rank 2 then G satisfies (SC). Conversely, if G is a finitely generated
metabelian group satisfying (SC) then G is finitely presented.

Thus (SC) provides a geometrical characterization of finitely presented met-
abelian groups. But the utility of the invariant EM0 and the condition (SC) is
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not restricted to metabelian groups. Abels has shown in [1] that the finitely
presented S-arithmetic groups G can be characterized using the set EM0: in
particular, his results give the following theorem.

Theorem 2.4. If G is a finitely generated S-arithmetic group and G is
nilpotent-by-abelian then G is finitely presented if and only if (i) (SC) holds
and (ii) H2(G', 7L) is a finitely generated ZGab-module.

Of course, the necessity of (i) and (ii) above follows from Theorem 2.3 and
Lemma 2.1. Theorem 2.3 also implies that if G is any group satisfying (SC),
in particular, if G is finitely presented and has no free subgroups of rank 2,
then G/G" is finitely presented. A result of Bieri, Neumann and Strebel [8]
whose proof relies on the property (SC) is the following.

Theorem 2.5. If G is a finitely presented group having no free subgroups
of rank 2, then for all L > G' with G/L V there is a a finitely generated
subgroup N > L with GIN = Z.

The invariant EM0 encodes important structural information for an arbitrary
finitely generated group G and it can be used, for example, in the study of
the automorphism group of G. However, when investigating finitely presented
soluble groups which are not nilpotent-by-abelian, one encounters modules for
non-abelian groups, and so far all attempts to find a natural extension of the
definition of EM when M is a module for a non-abelian group have proved
elusive.
Moreover, if G does not have V as a homomorphic image, then the sphere on
which EM lies contains at most two points, and so facts about open subsets
are of small utility. We note, for instance, that Theorem 2.5, whose proof
depends on properties of EMS, is vacuous in this case. If there is a subgroup
Go of finite index in G which maps surjectively to 7L2, then for many purposes
one can replace G by Go. So the groups for which methods using invariants
on spheres are ineffective are those having no subgroup of finite index which
maps surjectively to V. We shall return to these groups at the end of the
lecture.

(4) The growth criterion

We saw in Lecture 1 that finitely presented soluble groups G satisfy the
following condition.

(GC) There is a constant is > 0 such that d(Hab) 5 ,cIG : HIi for all subgroups
H of finite index in G.

We shall illustrate how (GC) can be used to give information about finitely
presented soluble groups. First we establish a module-theoretic consequence
of (GC).
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Suppose that G = M x Q, where M is an elementary abelian p-group for some
prime p. Let H be a subgroup of finite index in Q and write K = [M, H].
Thus Ka MH and we have MH/K = M/K x HK/K, so that

d((MH)ab) > d(M/K) = dimFp(M/[M, H]).

Combining this with (GC) we obtain useful information about the structure
of M; and this information is sometimes available for extensions which are
not split (see [26] or [16]):

Lemma 2.6. Suppose that G is a group which satisfies (GC) and which
is an extension M , G-»Q, where M is an elementary abelian p-group. If
either G splits over M or Q is a virtually torsion-free soluble minimax group,
then there is a constant k > 0 such that dimFp(M/[M,H]) 5 kIQ : HI1 for
each subgroup H of finite index in Q.

We shall now test the power of the criterion (GC) on some specific groups.
Suppose that G satisfies (GC) and has the following structure:

(a) G = MxQ, with M abelian and pM = 0;
(b) Q = ANT, with A 0 1;
(c) M, regarded as an IFA-module, is free of finite rank r > 0.

We take a subgroup D of finite index in A such that D< Q, and write V =
(D - 1)1FA. We have

M/MV = (IF.AIV)r = (IF,(A/D))',

so that dim F (MI MV) = r I A/D I. Moreover MV = [M, D] is normal in G.
Let HD = CQ(M/MV), so that [M, HD] = MV, and let TD = CT(M/MV).
Thus

IQ: HDI , IQ: DTDI = IAIDIITITDI.
Writing k for the constant given by Lemma 2.6, we conclude that

rIA/DI S kIA/DINT/TDI

and so
IAIDI s klIT/TDI where k1= k2/r2. (4)

Let a E A and u E TD, and choose a free generator m for the 1FA-module
M. Modulo MV we have

m[a, u] = ma-'u-lau =: ma-la = m,

so that [a, u] E D, since the image of m FA in M/MV is a free 1F, (AID)-
module. Thus TD 5 CT(A/D). Because of (4), a bound independent of D for
the order of CT(A/D)/TD would clearly have important implications for the
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structure of Q, but of course in general no such bound will exist. In order to
make further progress, we add some extra conditions:

(d) A is a torsion-free abelian group of finite rank;
(e) T = (z) is infinite cyclic;
(f) A is cyclic as a ZT-module, and the characteristic polynomial f of the

endomorphism of A 0 Q induced by z has integer coefficients;
(g) every non-trivial subgroup of T acts irreducibly on A 0 Q.

(For example, let A = Z[1/p] and f (t) = t - s with s E 7L\{0}.) The group G
is clearly soluble but not virtually metanilpotent. We suspect that most, if
not all, finitely presented soluble groups are virtually metanilpotent, and so
we would like the hypothesis that G satisfies (GC) to lead to a contradiction.
We shall make careful estimates of indices for a range of choices of D, and at
this stage number-theoretic considerations will turn out to be relevant.
For n E N let s(n) be the exponent of Aut (Z/nZ) and 5(n) the number of
distinct primes which divide n. The following result is elementary.

Lemma 2.7. Let S C N. If the set {n/e(n) I n E S} is bounded above then
so is the set {8(n) I n E S}.

Take 1, m E N, and define Dim = (aza-p`, azma_p I a E A). We have

AI Dlm - z(t)/(f (t), t - p`, tm -p) - z/(f (p`), pim -p),

and this has order alm = (f (p`), pim - p). It can be shown that there is an
upper bound k2 for all of the indices ICT(A/Dim)/TD, I. Therefore from (4)
we have for all 1, m

aim 5 k,k2ITICT(A/Dlm)I : klk2e(alm),

so that the set {a,m/E(ajm) 11, m e N} is bounded. It follows from Lemma
2.7 that {5(n) I n E S} is bounded, where S = {(f (p`), p`- - p) 1, m E N}.
We note that by condition (g) the polynomial f is irreducible. The following
easy result gives a different interpretation of the above property.

Lemma 2.8. Let n E Z, let f (t) be an irreducible monic polynomial in Z[t],
and let c be a root of f in a splitting field. The following are equivalent:
(i) for all integers b E N there are integers 1, m E N such (f (n`), n`m - n) is

divisible by at least b distinct primes;
(ii) the ring R generated by c has infinitely many maximal ideals I such that

the images of c, n in R/I are non-zero and generate the same multiplica-
tive group.

Thus we have our contradiction if a root of f has the property expressed

in condition (ii) above, with n = p. In the case when f (t) = t - s with
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s E 7G\{0}, we need to know whether there are infinitely many primes q such
that the images of s, p in Z/qZ generate the same multiplicative group.
It is natural to conjecture that if c, d are non-zero algebraic numbers which are
not roots of 1, then the ring R generated by c, d has infinitely many maximal
ideals I such that the images of c, d in R/I are non-zero and generate the same
multiplicative group. Unfortunately this seems hard to establish. Even in the
case when c, d E Q the matter is non-trivial. For the case when c, d E Q and
cd > 0, there is a short argument (based on the proof of Lemma 4.2 of [26])
using Dirichlet's theorem on primes in arithmetic progression and quadratic
reciprocity. A proof for the case when c, d E Q and cd < 0 was given by
Schinzel and Wojcik [23]; it occupies six journal pages. A few more partial
results are known in the special case when one of the algebraic numbers is a
rational prime.
Our attempts above to arrive at a contradiction seem therefore to have met
with rather qualified success. For the specific examples that we have dis-
cussed, there may be other ways of obtaining a contradiction. However the
point about the above calculations is that they can be made to apply in a
more general context. We have already noted that if G is a group none of
whose subgroups of finite index has Z2 as a homomorphic image, then the
information available from the geometric methods of Bieri and Strebel [10] is
of limited use. In [26] the following result was proved:

Theorem 2.9. Let G be a finitely presented soluble group and suppose that
no subgroup of finite index in G has V as a homomorphic image. Then G
has a nilpotent-by-cyclic subgroup of finite index.

The finitely presented nilpotent-by-cyclic groups are reasonably well under-
stood, by Theorem 2.3. In the proof of Theorem 2.9, deep results in the
representation theory of soluble minimax groups are used to reduce to some
groups resembling those discussed above, and these are shown not to satisfy
(GC), using calculations like those above, coupled with partial solutions to
the conjecture on pairs of algebraic numbers.

Lecture 3. Hilbert-Serre dimension

The condition (GC) discussed in the last lecture gives an inequality for each
subgroup of finite index, and we have seen how some of the inequalities can be
combined to elucidate the structure of finitely presented groups in a context
where other techniques (such as those associated with spheres) are unavail-
able. The arguments led rapidly to detailed calculations and an open problem
in number theory; and so it is clear that we can only expect (GC) to give
decisive results in very special circumstances.
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In this lecture I will describe a rather less ad hoc way of reassembling infor-
mation from the inequalities given by (GC). Though more information is lost
in this procedure, it seems natural and it can be carried out for a large class
of finitely presented groups. It involves ideas similar to those in the classical
dimension theory of commutative algebra.
Let R be a ring. We fix an additive function A on R-modules of finite com-
position length and a right ideal I of R with A(R/I) finite.
Let M be a right R-module. We define the Hilbert-Serre dimension of M
with respect to I, denoted hs (M, I), as follows:

hs (M, I) = oc if A(M/MIn) is infinite for some n E N

and

hs (M, I) = lim sup
log A(M/MI1)

otherwise.
n-+oo tog n

Thus if hs (M, I) = d is finite, then for all e > 0 one has

.X(M/Min) S nd+E for n large enough;

and d is the smallest number with this property. Equivalently, hs (M, I) may
be defined to be the Gelfand-Kirillov dimension of the associated graded
module ®n,o(MIn/MIn}1)
It is clear that hs (N, I) S hs (M, I) if N is an R-module image of M, and that
hs (M, ® M2, I) = max{hs (M,, I), hs (M2, I)} for any R-modules Ml, M2. It
follows that if M is finitely generated then hs (M, I) < hs (R, I). It is very
easy to prove

Lemma 3.1. Let I be an ideal of R with A(R/I) finite, and suppose that
M, - M-»M2 is a short exact sequence of R-modules. Then
(a) hs (M, I) 5 max {hs (M,, I), hs (M2, I)}.
(b) If in addition I has the strong Artin-Rees property and M, M, are finitely

generated, then hs (M, I) = max {hs (M,, I), hs (M2, I)}.

We recall that an ideal I of a ring R is said to have the strong Artin-Bees
property if for each finitely generated R-module A and finitely generated
submodule B there is an no E N such that AIn fl B = (Ain0 fl B) In-no for all

n>no.
In the case of interest to us, R is the group algebra 1FQ, where Q is a poly-
cyclic group, and A(N) = dim FP (N) for each finite-dimensional R-module N.
Most of the results we describe below remain true if Q is a finitely generated
soluble minimax group which is virtually torsion-free (with the torsion-free
rank of Q playing the role of the Hirsch number), with slightly different proofs.
For the remainder of this section, the prime p and the polycyclic group Q will
remain fixed and R will denote lFpQ.
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Lemma 3.2. If M is a finitely generated R-module and I is an ideal of
finite codimension in R, then hs (M, I) , h(Q).

Proof. Write r = h(Q). By the remarks preceding Lemma 3.1, it is sufficient
to prove the lemma in the case when M = R.
Let Q1 = Q fl (1 + I). Thus Q1 is the centralizer of R/I in Q and IQ : Q1I
is finite. Since Q1 is polycyclic, there is a constant c such that IQ1/Qi , ckr
for all k E N, where r is the Hirsch number of Q.
Let n E N and let j E N satisfy pj-1 < n p'. Since R has characteristic p
we have

Q;' ,1+Ip',1+I',
so that the image of Q in R/I" has order bounded by

(Q/Qij I , cjQ : Q1I(p')' , c'n' where c = cIQ : Q1Ip'.

Since dim FP (R/I") is at most the dimension of the group ring of the image
of Q in R/I", we conclude that

dim F,,(R/I") , c n'.

The result follows.

It does not seem at all clear in this degree of generality whether or not the
statement hs (M, I) E NU {0} must hold for all finitely generated modules M.
However the following result, which is an easy extension of the Hilbert-Serre
theorem of commutative algebra, shows that this is so if Q is nilpotent and I
is the augmentation ideal of R. It can be proved by imitating the standard
proof of the Hilbert-Serre theorem (as described, for example, in [2], Chapter
11), and using the fact that the augmentation ideal of the group algebra of
a finitely generated nilpotent group has the strong Artin-Rees property (by
Theorem 5 of [20]) and has a polycentral generating set.

Lemma 3.3. Suppose that R = ]FQ, where Q is a finitely generated nilpotent
group, and I is the augmentation ideal of R, and let M be a finitely generated
R-module. Then the Poincare series

P(M, I, t) = 1: dim F, (MIk/MIk+1)tk
k,>O

may be written in the form
f (t)

ll: (1-tti),

where f (t) E 7L[t] and each It is a positive integer. Moreover hs (M, I) is the
degree of the pole of P(M, I, t) at 1.

We now return to the general case in which Q is polycyclic and I has finite
codimension in R. We need information about modules M which is stable
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under passage from Q to subgroups of finite index. We define the (total)
Hilbert-Serre dimension of an R-module M to be the supremum of the num-
bers hs (M, I) as I runs through all ideals of R of finite codimension, and we
denote this by hs (M). Thus hs (M) < h(Q) if M is finitely generated, by
Lemma 3.2. If Q, is a subgroup of Q we write hs (MQ,) for the total Hilbert-
Serre dimension of M regarded as an IFQ,-module. The next result gives
some information about the relationship between hs (MQ) and hs (MQ, ).

Lemma 3.4. Let Q, be a subgroup of Q and write d = hs (MQ) and d1 =
hs (MQ,). The following assertions hold:
(a) d < d,;
(b) if IQ : Q, I is finite then d = d,;
(c) if Q, is a subnormal subgroup of Q and d1 is finite, then d = d,.

If Q is nilpotent, the function hs (M) defined above coincides with a dimension
function that is better known. We recall that the Krull dimension k(M) of a
non-zero module M is the greatest ordinal d such that M has a descending
chain of submodules of order-type Wd. We have

Lemma 3.5. (Groves and Wilson, [16]) If Q is nilpotent, then hs (M) _
k(M) for every non-zero finitely generated IFpQ-module M.

The relevance of the above results to the condition (GC) comes from the next
result.

Lemma 3.6. Let M be an R-module with the property that some extension
G of M by Q satisfies (GC), and write C for the centralizer of M in Q. Then
hs (M) <

Zh(Q/C).

Proof. We fix an ideal I of finite codimension in R. Set Q, = Q fl (1 + I).
Thus IQ: Q, I is finite. Write b = IQ : CQ, I and r = h(Q/C), and let c be a
constant satisfying

CQ1/v : (CQ1/V )kl < ckr

for all k E N.
Let n E N and define j E N by p'-1 < n p'. We have Q" < 1 + P", and so
[M, CQ1' ] < MIF' . Thus we have

dimFP(M/MIA') < kIQ : CQ;"I7' < kb71ICQ1/C : (CQ1/C)"Ii,

where k is the constant given by Lemma 2.6, and hence

dim Fy (M/MI") < dim Fp (M/MI"') < kbicp'(7'') < kbic(pn)4''.

We conclude that hs (M, I) < 2h(Q/C), and since this holds for all ideals I of
finite codimension in R the result follows.
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Now we describe three applications of these ideas to finitely presented groups.
The results which follow are all deeper and more difficult than the results
discussed so far in this lecture.

1. Extensions by abelian groups

Let Q be an abelian group with n = h(Q), and let the (n - 1)-sphere S(Q)
be defined as in Lecture 2.

Definitions. . A rational hemisphere is a subset of S(Q) of the form

{vIv(q)>0}

with q E Q. A rational spherical polyhedron (RSP) is a finite union of sets,
each of which is an intersection of finitely many rational hemispheres. The
dimension of an RSP is the dimension of a neighbourhood of an interior point.

The next two results explain our interest in rational spherical polyhedra.

Theorem 3.7. (Bieri and Groves, [7]) If M is a finitely generated ZQ-
module then the complement EM of EM in S(Q) is a RSP.

Lemma 3.8. (Groves and Wilson, [16]) Suppose that M is a finitely gener-
ated ZQ-module and that k(M) = m. Then
(a) dim E;,, 5 m - 1, and
(b) there is a subgroup Q1 of Q with h(Q1) = m such that M is finitely

generated as a ZQ1-module.

The deduction of assertion (b) above from the previous results is geometrical
in character. For each subgroup Q, with h(Q1) = m define

S(Q, Q1) = {v E S(Q) I v(Q1) = 0 1-

Thus S(Q, Q1) is a subsphere of dimension n - m - 1. Moreover Bieri and
Strebel showed in [11] that if M is a finitely generated ZQ-module then M
is finitely generated for ZQ1 if and only if S(Q, Q1) fl EM = 0. So our task
is to find a subsphere of the form S(Q,Q,) which is disjoint from a RSP of
dimension at most m, and it is fairly plausible on geometrical grounds that
this can be done.

It follows immediately from the above four results that if some extension of
the 1FQ-module M by Q satisfies (GC), then E111 is a RSP of dimension at
most 12 h(Q) - 1, and moreover M is finitely generated as an ]FQ,-module for
some subgroup Q1 with h(Q1) 5 2h(Q). This leads to the following result on
finitely presented nilpotent-by-abelian groups.
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Corollary 3.9. (Groves and Wilson, [16]) Let G be a finitely generated
nilpotent-by-abelian group satisfying (GC). Then there is a finitely generated
subgroup G, satisfying G' S G, 5 G such that

h(G/G,) >

Zh(Gab) if G' is a torsion group,

2h(Gab) - 1 in general.

This should be contrasted with the result Theorem 2.5, proved by Bieri,
Neumann and Strebel, which implies that if G is a finitely presented group
without free subgroups of rank 2, and if h(Gab) > 2, then there is a finitely
generated subgroup G, > G' with GIG, = Z.

2. Extensions by nilpotent groups

The assertions collected in Theorem 3.10 are obtained using techniques and
results in the representation theory of finitely generated nilpotent groups.
The proofs are difficult, and yet one suspects that the results are far from
best possible.

Theorem 3.10. (Groves and Wilson, [16], [17]) Let Q be a torsion-free
nilpotent group and suppose that there is an 1FQ-module M on which Q acts
faithfully and satisfying hs (M) S 2h(Q).

(a) If d(Q) 2 then Q is abelian.
(b) If d(Q) 5 then Q is nilpotent of class at most two.
(c) The centre of Q cannot be equal to Q' and be infinite cyclic.
(d) The group Q cannot be free nilpotent of class 2 and rank 3.

We would like to thank Aeroflot for providing us with the unexpected op-
portunity to work together with Hermann Heineken on the case d(Q) = 5 of
assertion (b), in the Special Delegates Lounge at Krasnoyarsk Airport.
The assertions above yield structural information about finitely presented
metanilpotent groups, in the form of restrictions on the structure of the quo-
tients of these groups by their Fitting subgroups. For example, assertion (a)
leads to the following result.

Theorem 3.11. (Groves and Wilson, [16]) If G is a finitely presented
meta-nilpotent group and d(G) S 2 then G is virtually nilpotent-by-(nilpotent
of class at most two).

A result valid for arbitrary finitely presented metanilpotent groups but with
a weaker conclusion has been proved by Brookes and Groves [12]: if G is such
a group then G is virtually nilpotent-by-(nilpotent of class at most d(G)).
Indeed, somewhat stronger results can be obtained using their techniques.
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3. Extensions by polycyclic groups

The behaviour and significance of hs (M) when Q is an arbitrary polycyclic
group seem a little obscure. We shall illustrate that hs (M) and k(M) do
not in general coincide. We begin by describing some important examples of
polycyclic groups.
Let A be a non-cyclic free abelian group of finite rank and let T be a free
abelian subgroup of the automorphism group of A such that A ®z Q is irre-
ducible as a QT1 -module for all subgroups T1 of T of finite index. Thus the
ring F of endomorphisms of A ®z Q as a 7GT-module is an algebraic number
field, and T is a subgroup of the group of units of the ring of algebraic integers
of F. Set Q = A >4 T. It is apparent that some assertions from number theory
have ramifications for the structure of these groups. For example, Dirichlet's
unit theorem implies that h(T) < h(A).
With Q as above, define M = FA. Then M becomes an FQ-module with
A acting on M by multiplication and T acting by conjugation. From the
commutative Hilbert-Serre theory we have hs (MA) = h(A) (see for example
Atiyah and Macdonald [2], Chapter 11). Lemma 3.4 shows that hs (MA) _
hs (MQ). Therefore

hs (MQ) = h(A) > 1.

The FDQ-submodules of M are just the ideals of FDA which are invariant
under the action of Q, and, by a theorem of Bergman [6], all non-zero such
ideals have finite codimension in FA. It follows that

k(M) = 1.

Now suppose that the group Q is as above, but that M is any FQ-module
which, regarded as a module for the integral domain FDA, is torsion-free of
finite rank. Considerations like those in the above paragraph, together with
the inequality h(T) < h(A) which comes from Dirichlet's unit theorem, give

hs (MQ) = hs (MA) = h(A) > 1(h(A) + h(T)) = 2h(G).

Thus no extension of M by Q can satisfy (GC); and so no such extension can
be finitely presented. This result can be extended.

Theorem 3.12. (Brookes, Roseblade and Wilson, [13]) Suppose that Q is
a polycyclic group and M is an FQ-module. If some extension of M by
Q is finitely presented, then Q has a normal subgroup L such that Q/L is
virtually nilpotent and such that L acts nilpotently on M. Finitely presented
abelian-by-polycyclic groups are virtually metanilpotent.

There are many examples of finitely generated abelian-by-polycyclic groups
which are not virtually metanilpotent (for example, standard wreath prod-
ucts of Z with polycyclic groups which are not virtually nilpotent), and the
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above result shows that such groups certainly cannot be embedded in finitely
presented abelian-by-polycyclic groups. This gives a negative answer to a
question raised in 1973 by G. Baumslag [5].
An important part of the proof of this difficult result is a reduction to the
case when Q is a split extension A x T of the type described above. The
hypothesis of the theorem has consequences not dissimilar to the assertion
hs (M) S 2h(Q), and the strategy is to use the unit theorem just as above.
The notion of applying the unit theorem to show that groups are not finitely
presented seems somewhat curious (and the strategy would break down for
extensions of nilpotent groups by soluble minimax groups), but it is the only
way known at the moment to tackle such problems.
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